Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

95 \% всех данных в мире по-прежнему хранится на бумаге. К большей части никто никогда не обращается повторно.

Еще   [X]

 0 

Эволюция. Классические идеи в свете новых открытий (Марков Александр)

Что такое польза? Как случайная мутация превращает аутсайдеров в процветающих победителей? Что важнее для эволюции – война или сотрудничество?

Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.

Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, – известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.

Год издания: 2015

Цена: 149.9 руб.



С книгой «Эволюция. Классические идеи в свете новых открытий» также читают:

Предпросмотр книги «Эволюция. Классические идеи в свете новых открытий»

Эволюция. Классические идеи в свете новых открытий

   Что такое польза? Как случайная мутация превращает аутсайдеров в процветающих победителей? Что важнее для эволюции – война или сотрудничество?
   Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.
   Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, – известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.


Александр Марков, Елена Наймарк ЭВОЛЮЦИЯ Классические идеи в свете новых открытий

Предисловие. Почему жизнь прекрасна?

   Удивительная сложность живых существ, их фантастическое разнообразие, их почти совершенная приспособленность к среде, друг к другу, к занимаемому «месту в экономии природы»[1] – факты примечательные и требующие объяснений. В прошлом они поражали воображение ничуть не меньше, чем теперь. Впрочем, в донаучную эпоху и с объяснениями было, прямо скажем, попроще: годились на эту роль чуть ли не любые эстетически сбалансированные выдумки.
   По мере развития науки отношение грамотных людей к традиционно-мифологическим «объяснениям» становилось более прохладным. «Напрасно многие думают, что все, как видим, с начала Творцом создано… Таковые рассуждения весьма вредны приращению всех наук, следовательно, и натурному знанию шара земного. Хотя оным умникам и легко быть философами, выучась три слова наизусть: Бог так сотворил, и сие дая в ответ вместо всех причин», – писал М. В. Ломоносов.
   Но как объяснить поразительную гармонию живой природы, не привлекая гипотез о сверхъестественном? Несмотря на попытки многих незаурядных умов – от Эмпедокла до Ламарка – предложить рациональное объяснение, вплоть до 1859 года общепринятым ответом на этот вопрос оставалось твердое «никак». Сложность и приспособленность живых организмов считались чуть ли не самым наглядным и неопровержимым свидетельством божественного сотворения мира. «Книгу природы» называли вторым Писанием, ее изучение – «естественным богословием». Читаем, к примеру, у того же Ломоносова: «Создатель дал роду человеческому две книги. В одной показал свое величество, в другой свою волю. Первая – видимый сей мир, им созданный, чтобы человек, смотря огромность, красоту и стройность его зданий, признал божественное всемогущество по мере себе дарованного понятия. Вторая книга – Священное Писание. В ней показано Создателево благоволение к нашему спасению».
   Казалось, чем больше новых фактов мы откроем, тем яснее постигнем высший замысел.
   Все пошло наперекосяк после выхода в свет книги Дарвина «Происхождение видов путем естественного отбора» (1859). До Дарвина человечеству был известен только один надежный способ создания сложных, целесообразно сконструированных объектов: разумное проектирование. Ранние эволюционные гипотезы, такие как гипотеза Ламарка, изложенная в его книге «Философия зоологии» (1809), предлагали лишь непроверяемые и неполные альтернативы. Например, ламарковская идея наследования результатов упражнения и неупражнения органов предлагала рациональное объяснение (хоть и неверное, как мы теперь знаем) увеличения или уменьшения уже имеющихся структур, но не объясняла происхождение новых органов. Поэтому Ламарку пришлось вдобавок к упражнению постулировать еще и особую движущую силу, заставляющую организмы развиваться по пути усложнения, – загадочное «стремление к совершенству». Это было немногим лучше Божьего промысла.
   Дарвин предложил другой, гораздо более простой, изящный и очевидный путь самопроизвольного совершенствования живых существ: естественный отбор случайных наследственных изменений. Гипотеза Дарвина не постулировала никаких неведомых сил и новых законов природы и вообще, казалось бы, лежала на поверхности[2]. Если объекты умеют размножаться, если они передают потомкам по наследству свои индивидуальные черты, если черты эти иногда случайным образом меняются и если, наконец, хотя бы некоторые из таких изменений повышают эффективность размножения, то такие объекты просто обязаны – и будут! – сами собой, без всякого разумного вмешательства, становиться все более совершенными с течением поколений. Под совершенством в данном случае понимается приспособленность, она же эффективность размножения.
   Ученый мир был потрясен. Правда, Лаплас (в ответ на вопрос Наполеона, где же Бог в его модели Солнечной системы) еще полвека назад заявил, что «не нуждается в этой гипотезе». Но Лаплас говорил о физике. Почти всем казалось, что уж в биологии-то без «этой гипотезы» никуда.
   Конечно, высказать красивую догадку мало; логически обосновать ее – тоже мало; догадка должна еще оказаться верной (и проверяемой). Теория Дарвина могла и не подтвердиться в ходе дальнейшего развития науки. Но у него был особый дар выдвигать верные гипотезы на основе неполных данных. Не зная генетики, не зная природы наследственности, задолго до открытия ДНК Дарвин сумел правильно сформулировать главный закон жизни.
   Для «естественного богословия» книга Дарвина стала началом конца. Именно этого никогда не простят Дарвину ортодоксы и фундаменталисты (пресловутое «человек произошел от обезьяны» – в общем-то мелочь, частный случай). Вектор развития биологии, да и всего научного осмысления мира, сменился на противоположный. Новые открытия снова и снова подтверждали Дарвина, а не сотворение. Естественный отбор, слепая природная сила, торжествовал над «разумным замыслом». Дарвин опрокинул мироздание, каким его представляли прежде, заменив красивую сказку не менее красивой, но, увы, более трудной для понимания научной теорией.
   Дарвиновская модель отбора небольших наследственных изменений вроде бы проста – но простота ее лишь кажущаяся. Неслучайно эта модель, лежащая теперь в основе биологии, вошла в науку так поздно – во второй половине XIX столетия. В других науках – математике, физике, астрономии – теоретические прорывы, сопоставимые с ней по своему значению и уровню, начались на одно-два столетия раньше. Даже сегодня нередки случаи, когда не самые глупые люди «спотыкаются» на дарвиновской модели, не могут понять, как она работает, как объясняет наблюдаемые факты (а некоторым и вовсе кажется, что эти факты не нуждаются в объяснениях).
   Возможно, одна из причин непонимания – недостаточное внимание к деталям. Исходя из общих принципов можно почти любое явление истолковать и так и эдак: философские рассуждения, как известно, хороший инструмент для обоснования прямо противоположных выводов. Эволюция контринтуитивна. Мы привыкли к тому, что все получится как следует лишь при четко поставленной цели и грамотном руководстве. В этом смысле нам комфортнее существовать, когда кто-то набросал планчик развития на пять лет вперед, а не в условиях жестокой стихии «свободного рынка». Мы прекрасно знаем, что победить легче, если наступление ведет расставленная на запланированных позициях армия, а не множество разрозненных индивидов, преследующих какие-то свои личные цели. Так или иначе, интуиция обычно подсказывает нам, что без сознательного планирования и контроля ничего хорошего не выйдет, только хаос. Эволюционная биология навсегда останется непостижимой для тех, чей разум не в силах освободиться от плена этих интуитивных ощущений.
   Задача, которую мы поставили перед собой, приступая к работе над книгой, – попробовать на основе новых научных данных разобраться в том, как работает дарвиновский отбор. Почему и как из хаоса случайных наследственных изменений рождается что-то новое, полезное, красивое, гармоничное и сложное. Здесь важно отказаться от общих рассуждений и разговоров на уровне «здравого смысла» – они сейчас мало кого убедят. Мы должны приглядеться к фактам, деталям, примерам, из которых проявится во всей своей сложности и логичности механизм великого исторического двигателя – естественного отбора.
   Как появляются новые гены, новые признаки, новые адаптации[3], новые виды, новые типы? В чем вообще состоит биологическое значение этих слов: новое, полезное, красивое, гармоничное, сложное? Ведь все эти термины в биологии имеют особые оттенки смысла. Что считать настоящим «новшеством» – обретение ли новой мутации, нового облика, нового гена, новой функции или нового места жительства? Попробуйте ответить на такие вопросы с налету… А что такое «красота» с точки зрения пчелы или цветной озерной рыбки? Уж наверное, не то же самое, что для жюри конкурса «Мисс мира». Чтобы разобраться в устройстве живой природы, чтобы понять смысл всех ее составных частей и взаимосвязей, необходимо прежде всего понять их эволюционный контекст. Мы хотим разглядеть эволюцию вблизи. Мы хотим развинтить эволюционный механизм на все его шестеренки и винтики, изучить их, понять, как они соединяются, а потом свинтить обратно и убедиться, что он по-прежнему тикает. Но эта работа даст нам представление обо всем устройстве – если тикает, значит, мы поняли его механику.
   В «Рождении сложности», нашей первой книге по эволюционной биологии, акцент был сделан на «опровержении догм». Действительно, многие выводы, которые казались абсолютными лет 50 назад, сегодня приходится пересматривать. Стало ясно, что жизнь устроена сложнее, чем представлялось еще недавно. В естественных науках вообще, а в биологии в особенности с абсолютными истинами туго. Из любого правила найдутся исключения. С другой стороны, «Рождение сложности» может создать в сознании читателей своего рода «догмоопровергательный перекос». Кто-то может подумать, что слишком уж многое из того, о чем писали классики эволюционной биологии, не выдержало проверки временем.
   Так вот, исправление этого перекоса – еще одна задача книги, которую вы держите в руках. Ведь на самом деле классические идеи не столько опровергаются новыми открытиями, сколько конкретизируются, уточняются и развиваются. Так, палеонтологи могут сколько угодно корректировать систематическое положение трилобитов, сближая их то с ракообразными, то с паукообразными, то выделяя в отдельный подтип – из этого вовсе не следует, что наши знания о трилобитах недостоверны или что наука топчется на месте, теряясь в догадках, – напротив, эти процессы отражают все более полное и правильное понимание учеными этой вымершей группы животных, причем наиболее фундаментальные, классические истины остаются незыблемыми и только укрепляются (например, уверенность в том, что трилобиты – представители членистоногих, а значит, последний общий предок трилобита и мухи жил позже, чем последний общий предок трилобита и воробья). Классические идеи зачастую потому и являются классическими, что они надежно подтверждены с многих сторон. Они позволяют развивать и видоизменять представления о мире без всякого для них ущерба. Это, конечно, лучший вариант «классических идей»: иногда под них успешно маскируются действительно устаревшие догмы. И то и другое – поднадоевшие штампы, но что поделаешь – именно с ними то и дело встречаешься в научном быту. Так или иначе, те классические идеи, о которых пойдет речь в книге, – это классика в хорошем смысле слова. Мы постараемся подкрепить это утверждение новейшими научными данными.
   В последние годы биологи получили целый блок новых данных, позволивших лучше понять, как крутятся шестеренки эволюционного механизма. Чудесные вещи происходят прямо у нас на глазах. Скелеты теорий обрастают плотью реальных фактов. Многие красивые гипотезы и модели, которые до сих пор не удавалось проверить экспериментально, наконец подверглись такой проверке. Закономерности, до сих пор существовавшие лишь в воображении теоретиков, мы теперь можем разглядывать в микроскоп. Мы можем пользоваться ими! «Прикладная эволюционная биология» – уже не фантастика, а реальность. Именно таким открытиям посвящена книга.
   Нам предстоит рассмотреть на конкретных примерах, как работают наследственность, изменчивость, отбор, конкуренция, изоляция, дрейф и другие слагаемые великой природной машины, неустанно создающей новые виды живых существ.
   Мы надеемся, что читатель уже обладает минимальными знаниями по биологии – а если не обладает, то сможет сам подсмотреть недостающие сведения в доступных источниках, например в учебнике или в «Википедии»[4]>. В конце концов, нельзя же в каждой научно-популярной книге повторять одни и те же сведения из школьной программы. Жалко времени, бумаги и тех читателей, для которых это будет не первая биологическая книга, которую они взяли в руки. Поэтому мы не будем подробно в сотый раз пересказывать, что такое репликация ДНК и клеточная мембрана, а перейдем сразу к делу.
   Несколько терминов, без которых не обойтись
   Наследственная информация, содержащаяся в ДНК, разнородна и записана на нескольких разных «языках». Лучше всего изучен язык белок-кодирующих участков ДНК[5]. Последовательность нуклеотидов в таком участке представляет собой инструкцию по синтезу белковой молекулы, записанную при помощи генетического кода – общей для всего живого системы соответствий между определенными тройками нуклеотидов ДНК (триплетами, или кодонами) и аминокислотами, составляющими белок. Например, тройка нуклеотидов ААА кодирует аминокислоту лизин, ЦГГ – аргинин.
   Чтобы синтезировать белок на основе такой инструкции, информацию сначала нужно переписать с ДНК на РНК – молекулу, отличающуюся от ДНК некоторыми деталями: например, вместо нуклеотида Т (тимидин) в РНК используется У (уридин). Переписывание информации с ДНК на РНК (синтез РНК на матрице ДНК) называется транскрипцией. Ген может транскрибироваться часто, и тогда в клетке будет производиться много молекул данного белка, или редко, и тогда белка будет мало. Это называют уровнем экспрессии гена. Уровень экспрессии контролируется специальными белками-регуляторами.
   Затем получившаяся молекула РНК используется для синтеза белка. Молекулярная «машинка» для синтеза белка на основе инструкций, записанных в РНК, называется рибосомой, а сам процесс белкового синтеза – трансляцией.

Глава 1. Наследственность: куда катится мир?

ДНК – главная «шестеренка» наследственности

   В истории биологии за последние полтора века было несколько острых моментов, когда дарвиновская модель подвергалась серьезной проверке – и наверняка была бы опровергнута, окажись она ошибочной. Один из них наступил в начале 1950-х, когда несколько талантливых биологов и химиков[6] всерьез занялись расшифровкой структуры ДНК – загадочного «вещества наследственности». Дело, как известно, завершилось открытием знаменитой двойной спирали в 1953 году. Согласно легенде, Фрэнсис Крик на радостях воскликнул: «Мы открыли главную тайну жизни!» Что он имел в виду? Не погорячился ли?
   Четыре важнейших события в истории биологии
   1. 1859 год. Теория эволюции путем естественного отбора.
   2. 1900–1910-е годы. Классическая генетика, хромосомная теория наследственности. Поначалу многим казалось, что генетика противоречит дарвинизму: ведь Дарвин ставил во главу угла небольшие, плавные изменения, а ранние генетики работали с «грубыми и зримыми» дискретными изменениями – мутациями с сильным эффектом.
   3. 1930-е годы. Кажущееся противоречие благополучно разрешилось. Сложилась генетическая, она же синтетическая, теория эволюции (ГТЭ или СТЭ) – триумфальное объединение дарвинизма с генетикой.
   4. 1950–1960-е годы – открытие материальной природы наследственности и изменчивости: структура ДНК, репликация, транскрипция, трансляция, генетический код.
   Чтобы понять, почему вокруг открытия двойной спирали ДНК был поднят такой шум, нам понадобится совсем чуть-чуть исторического контекста. Уже была генетика. Уже было известно, что наследственная информация состоит из дискретных единиц – генов, которые находятся в хромосомах и расположены там линейно, один за другим. В состав хромосом входят белки и ДНК. Сначала казался вполне возможным вариант, что наследственная информация записана в белках. Ведь белки состоят из 20 разных аминокислот, а ДНК – только из четырех нуклеотидов. ДНК казалась слишком «однообразной» молекулой. В этом есть логика: записать длинный текст 20-буквенным алфавитом, казалось бы, проще, чем четырехбуквенным[7]. Но потом выяснилось, что наследственная информация все-таки хранится в ДНК. Это было показано в экспериментах с мечеными вирусами. Оказалось, что для того, чтобы вирус-бактериофаг размножился в бактериальной клетке, необходимо и достаточно, чтобы в клетку попала вирусная ДНК. Вирусным белкам проникать в бактерию не нужно. Вся необходимая для их производства информация находится в ДНК. Значит, именно ДНК является «веществом наследственности».
   Оставалось два величайших вопроса.
   Каким способом, на каком языке записана наследственная информация в молекуле ДНК?
   Как удается клетке копировать эту информацию перед каждым делением?
   Ответ на первый вопрос уже напрашивался. Было известно, что ДНК – это длинная молекула, полимер, состоящий из нуклеотидов четырех типов. Их, как вы, конечно, помните, обозначают буквами А, Г, Т, Ц. Наследственная информация как-то закодирована в последовательности нуклеотидов – записана этим четырехбуквенным алфавитом.
   Более загадочным представлялся второй вопрос. Тут нужно пояснить, что Жизнь (не любая жизнь, а такая, развитие которой адекватно описывается генетической теорией эволюции) может быть основана не на всяком полимере, в котором что-то закодировано. Это должна быть молекула, во-первых, способная к размножению, во-вторых – обладающая наследственной изменчивостью. Белки, между прочим, этими свойствами не обладают (за одним интересным исключением, о котором мы скоро расскажем).
   Начнем с размножения. Молекула, лежащая в основе жизни, должна содержать в себе инструкцию по производству копий самой себя. Говоря химическим языком, это должна быть молекула, способная катализировать синтез своих копий. Без этого живые существа просто не смогут размножаться. Наследственная информация должна копироваться, чтобы родители могли передавать ее потомкам.
   Способность «молекулы наследственности» к размножению – достаточное условие для того, чтобы Жизнь, основанная на такой молекуле, могла существовать. Например, если бы это была искусственно сотворенная кем-то Жизнь, не подверженная эволюционным изменениям, то «молекуле наследственности» достаточно было бы просто уметь размножаться.
   Этого, однако, недостаточно для Жизни, способной к эволюции на основе дарвиновского механизма. Если ГТЭ адекватно описывает реальность, то «молекула наследственности» обязана обладать еще одним свойством – наследственной изменчивостью. Это значит, что молекулам-потомкам должны передаваться не только «общеродовые характеристики» родительской молекулы, но и ее индивидуальные, частные особенности, которые время от времени подвергаются небольшим случайным изменениям. Эти изменения обязательно тоже должны наследоваться.
   Системы, способные размножаться и обладающие наследственной изменчивостью, называют репликаторами.
   Размножение без наследственности
   Пример размножения без наследственной изменчивости – автокаталитическая реакция Бутлерова. В ходе этой реакции формальдегид (CH2O) превращается в сложную смесь разных сахаров, причем катализатором реакции служат те самые сахара, которые в ней образуются. Именно поэтому реакция и является автокаталитической: ее катализируют ее собственные продукты.
   Такую реакцию можно описать в терминах размножения, изменчивости и наследственности. Молекулы сахаров катализируют синтез других молекул сахаров: можно сказать, что они размножаются, используя формальдегид в качестве «пищи». У них есть и изменчивость, ведь в итоге получается смесь разных сахаров. Но вот наследственной эта изменчивость не является, потому что состав получающейся смеси практически не зависит от того, какие именно сахара катализировали реакцию. Вот если бы, скажем, рибоза избирательно катализировала синтез именно рибозы, но при этом иногда «по ошибке» синтезировались молекулы глюкозы, которые начинали бы избирательно катализировать синтез других молекул глюкозы, тогда мы могли бы сказать, что в системе есть наследственная изменчивость.
   Другой пример приводит в своих книгах Ричард Докинз: горение. Мы можем зажечь спичку, ее огнем поджечь свечу, огнем свечи – еще что-нибудь. Огоньки как будто размножаются, но индивидуальные черты конкретного огонька – например, его цвет – не зависят от свойств огонька-родителя. Они зависят только от «среды», например, от состава горючего материала. Как и сахара в реакции Бутлерова, огонь передает по наследству только свои «общеродовые характеристики», но не индивидуальные особенности. В такой системе есть размножение и изменчивость, но нет наследственности в узком смысле. Подобные системы могли бы лежать в основе каких-то живых существ, но только искусственных, сотворенных в готовом виде, – как если бы роботы собирали других роботов из подручных материалов. Самостоятельно развиваться и усложняться, эволюционируя «по Дарвину», такие существа не смогли бы.
   Задолго до расшифровки структуры ДНК генетики уже точно знали, что мутации (случайно возникающие изменения генетического материала) тоже копируются и наследуются. Это значит, что система копирования наследственной информации не зависит от того, какая именно информация с ее помощью копируется. Это универсальная система: не штамп, раз за разом производящий одинаковые тексты, а нечто вроде ксерокса, который размножает любой текст независимо от его содержания. Если в тексте случайно возникнет изменение, то копии, снимаемые с измененного текста, тоже будут содержать в себе это изменение.
   Таким образом, молекула ДНК должна обладать удивительным свойством – она должна быть способна к самокопированию, причем нужно, чтобы все нуклеотиды у копии стояли в той же последовательности, что и в оригинале. Если возникает мутация, то копии с мутантной молекулы тоже должны содержать эту мутацию. Только такая молекула – молекула-репликатор – может лежать в основе земной жизни. Это следовало из дарвиновской теории. Это следовало из данных генетики. И это блестяще подтвердилось – открытием Уотсона и Крика.
   Главное, что они открыли, – принцип специфического спаривания нуклеотидов, или комплементарности. В двойной спирали ДНК аденин (А) всегда соединяется с тимином (Т), а гуанин (Г) – с цитозином (Ц). Комплементарные нуклеотиды подходят друг к другу по размеру (пары А – Т и Г – Ц имеют одинаковый размер, и поэтому спираль ДНК получается ровная и прочная), а также по расположению положительно и отрицательно заряженных участков. В силу последнего обстоятельства между А и Т образуются две водородные связи, а в парах Г – Ц таких связей три.
   В конце своей эпохальной статьи с описанием структуры ДНК авторы обронили: «От нашего внимания не ускользнуло, что специфическое спаривание, постулированное нами, непосредственно указывает на возможный механизм копирования генетического материала» (Watson, Crick, 1953). Эту фразу считают одним из двух самых скромных высказываний в истории биологии[8]. Разумеется, от их внимания не ускользнуло, что они открыли главную тайну жизни!
   Итак, открытие состояло в том, что молекула ДНК оказалась так устроена, что ее очень легко скопировать. Для этого достаточно расплести двойную спираль на две нити, а затем к каждой из них достроить вторую нить в соответствии с принципом комплементарности. Это значит, что молекула ДНК кодирует сама себя. Каждая из нитей двойной спирали кодирует вторую нить, в точности определяя ее строение. ДНК кодирует также и многое другое – все строение организма в конечном счете, но в первую очередь она кодирует себя. Она сама контролирует производство своих копий. Механизм копирования (репликации) ДНК заложен непосредственно в ее структуру. Естественно, любая ошибка-мутация, любая нуклеотидная замена при таком способе копирования будет унаследована дочерними молекулами ДНК.
   Молекула наследственности оказалась именно такой, какой она должна была оказаться в соответствии с предсказаниями ГТЭ. Ученые любят, когда все сходится, когда теоретические построения подтверждаются фактами. Так что у Крика был достойный повод для громких заявлений о «тайне жизни».
   Еще один важный вывод состоит в том, что из структуры молекулы ДНК непосредственно вытекает неизбежность дарвиновской эволюции. Живые существа, обладающие такой молекулой наследственности, просто не могут не эволюционировать «по Дарвину». Никакая система копирования не может быть абсолютно точной. Время от времени обязательно будут возникать сбои, ошибки, т. е. мутации. Они будут передаваться по наследству. Поскольку ДНК определяет львиную долю наследственных свойств организма (оставим чуть-чуть на всякого рода эпигенетику и материнские эффекты[9]), какие-то мутации непременно будут влиять на эффективность размножения – как самих молекул ДНК, так и организмов, чье строение ими контролируется. Таким образом, ДНК обеспечивает выполнение набора условий, необходимых и достаточных для дарвиновской эволюции: 1) размножение; 2) наследственная изменчивость; 3) влияние второй на эффективность первого[10].

Нестандартные репликаторы: дарвиновская эволюция без участия генов

   Земная жизнь основана на размножении репликаторов определенного типа – полинуклеотидов РНК и ДНК. Но это не единственный тип репликаторов, существующий в природе. Многие философы и социологи считают, что в культурной эволюции важную роль играют мемы – единицы культурной информации, которые используют наш разум для собственного выживания и размножения примерно так же, как гены используют клетку. Предполагается (хотя и не доказано), что мемы, как и гены, обладают всеми свойствами, необходимыми для дарвиновской эволюции: наследственной изменчивостью и дифференциальным размножением. Если объект обладает этими свойствами, то он является репликатором, и он будет автоматически эволюционировать, приспосабливаясь к среде своего обитания.
   Прионы – нестандартные репликаторы, представляющие собой особым образом свернутые молекулы белка PrP (называемого также прионным белком). Этот белок в норме присутствует на мембранах нейронов и выполняет какие-то полезные функции, связанные с передачей сигналов. Какие именно – пока не совсем ясно (Chiesa, Harris, 2009). Безобидный прионный белок превращается в смертоносный прион в результате «неправильного сворачивания».
   Прион обладает двумя удивительными свойствами. Во-первых, он заставляет нормальные прионные белки сворачиваться неправильно, превращая их в свои копии. Так прион размножается: он катализирует синтез собственных копий, используя в качестве «пищи» (материала для построения этих копий) нормальные, правильно свернутые молекулы белка PrP. Во-вторых, прион устойчив к действию протеолитических ферментов, задача которых состоит в уничтожении отслуживших белковых молекул. Оба свойства связаны со способностью прионов слипаться в большие комки из множества молекул. Первые несколько слипшихся прионов становятся «центром кристаллизации», к которому прилипают все новые и новые молекулы. В конце концов это приводит к нарушению работы нервной клетки.

   Два варианта пространственной конфигурации прионного белка: a – нормальная конфигурация (преобладают так называемые альфа-спирали); б – патологическая конфигурация (преобладают «бета-листы»). Стрелки – условные, они показывают направление от N-конца белковой молекулы (где находится аминогруппа) к C-концу (где находится карбоксильная группа).

   Самое неприятное, что нейрон, в котором «завелись» прионы, заражает ими соседние нейроны. В результате прионная инфекция распространяется по нервной системе. Способность к размножению, устойчивость к протеолитическим ферментам и заразность делают прионы опасными инфекционными агентами, похожими по своим свойствам на вирусы. Как и вирусы, прионы могут размножаться только за счет ресурсов, предоставляемых хозяйской клеткой. Вирусу необходимо, чтобы клетка синтезировала для него вирусные белки согласно инструкциям, записанным в вирусной ДНК или РНК. Приону необходимо, чтобы клетка синтезировала для него нормальные молекулы прионного белка PrP, а прион уже сам превращает их в свои копии. Разница между вирусом и прионом существенна для молекулярного биолога, но совсем не так заметна для эпидемиолога или тем более заболевшего животного. Прионы вызывают смертельные нейродегенеративные заболевания у человека и других млекопитающих, в том числе коровье бешенство и куру.
   То, что прионы умеют размножаться, сомнений не вызывает. Но до недавних пор было неясно, являются ли они полноценными репликаторами. Иными словами, есть ли у них весь необходимый «джентльменский набор» для дарвиновской эволюции. Способны ли прионы мутировать и передавать мутации по наследству, и если да, то влияют ли эти мутации на эффективность размножения прионов? Действует ли на прионы естественный отбор? Могут ли они приспосабливаться к изменениям среды, например к лекарствам, применяющимся для борьбы с прионными инфекциями? Эксперименты, проведенные американскими биологами, дали положительные ответы на эти вопросы (Li et al., 2010).
   В нейронах одного и того же вида животных встречаются разные штаммы (разновидности) прионов. Например, у мышей из одной и той же лабораторной линии, имеющих одинаковые прионные белки PrP, может встречаться до 15 разных прионных инфекций, различающихся по скорости развития болезни и неврологическим симптомам. Было замечено, что если взять штамм прионов у одного вида животных, заразить им другой вид, а потом взять прионы у второго вида и снова заразить ими первый, то симптомы в некоторых случаях оказываются уже другими.
   Это позволило предположить, что у белка PrP есть несколько разных вариантов неправильного сворачивания и превращения в прион. При этом каждый из вариантов наследуется, т. е. сохраняется в ряду «поколений» прионов. Возможно, прионы могут «мутировать» и передавать свои мутации по наследству. Мутации прионов, конечно, не связаны с изменениями аминокислотной последовательности белка, а представляют собой изменения его пространственной структуры (способа сворачивания).
   Чтобы проверить эти предположения, ученые провели эксперименты с разными штаммами прионов и разными клеточными культурами. Выяснилось, что свойства прионов закономерным образом меняются, когда их пересаживают из одних клеток в другие, причем изменения происходят не сразу, а постепенно.
   Для начала исследователи заразили клеточную культуру под условным названием PK1 прионами штамма 22L из мозга больной мыши. Оказалось, что чем дольше прионы живут и размножаются в клетках PK1, тем сильнее они отличаются по своим свойствам от исходных прионов из мозга мыши. Исходные прионы 22L успешно заражают другую клеточную культуру (R33) и нечувствительны к действию алкалоида сваинсонина, который замедляет размножение некоторых прионов в клетках. Однако по мере жизни прионов в клетках PK1 они постепенно утрачивают способность заражать клетки R33 и становятся все более чувствительными к сваинсонину.
   Простейшее объяснение состоит в том, что популяция прионов в мозге больной мыши исходно была гетерогенной (разнородной), и в ней преобладали прионы, устойчивые к сваинсонину и заразные по отношению к R33. Однако жизнь в клетках PK1 приводит к тому, что в популяции растет доля прионов, чувствительных к сваинсонину и не способных заражать R33. Прионы с этими свойствами быстрее размножаются в клетках PK1, т. е. налицо вытеснение одних прионов другими под действием отбора[11].
   Способны ли прионы восстанавливать утраченную устойчивость к лекарству? Чтобы выяснить это, ученые пересаживали прионы, чувствительные к сваинсонину, из клеток PK1 в мозг мышей. К тому времени, когда заболевание достигло терминальной стадии (через 147 дней после заражения), прионы полностью восстановили устойчивость к сваинсонину. Значит, они действительно эволюционируют!
   Более того, оказалось, что если выращивать прионы, чувствительные к сваинсонину, в клеточной культуре в присутствии небольших концентраций этого алкалоида, то прионы быстро вырабатывают устойчивость к нему. Таким образом, эти необычные репликаторы приспосабливаются к меняющимся условиям совсем как вирусы или бактерии.
   Выработка устойчивости в экспериментах могла происходить либо за счет преимущественного размножения устойчивых разновидностей прионов, которые уже существовали в исходной популяции (хоть и в малом количестве), либо за счет появления новых мутаций в ходе эксперимента. Дополнительные эксперименты показали, что прионы-мутанты, устойчивые к сваинсонину, возникают спонтанно. Это происходит даже в отсутствие сваинсонина, т. е. когда в такой мутации нет необходимости. Частота мутаций – примерно один случай на миллион клеточных делений. Напомним, что «мутация» приона не связана с изменением последовательности аминокислот – это просто другой способ сворачивания белковой молекулы. Мутация наследуется, потому что прион, свернутый определенным образом, заставляет «исходный материал» (прионный белок PrP) сворачиваться точно так же.
   Итак, прионы мутируют, передают мутации по наследству, и эти мутации влияют на эффективность их размножения. У прионов есть все необходимое, чтобы эволюционировать под действием отбора.
   Ключевой вопрос, ответа на который пока нет, состоит в том, как далеко может зайти такая эволюция. По идее, у прионов должно быть гораздо меньше эволюционных возможностей, чем у тех же вирусов, потому что число возможных пространственных конфигураций белка PrP вряд ли может сравниться с невообразимо громадным числом возможных последовательностей нуклеотидов в геноме вируса. Неясно, может ли отбор у прионов быть «накопительным» – может ли он создавать новые свойства путем последовательного закрепления множества изменений. Скорее, отбор у прионов все-таки «одноразовый», работающий с единичными мутациями, причем набор возможных мутаций невелик.
   Практический вывод состоит в том, что при разработке лекарств от прионных болезней лучше не бороться с конкретными штаммами прионов – к таким лекарствам прионы могут приспособиться, – а пытаться повысить устойчивость нормального прионного белка, чтобы он всегда сворачивался правильно. Самым радикальным средством было бы полное отключение гена, кодирующего белок PrP. Правда, пока неясно, к каким побочным последствиям это приведет. Мыши с отключенным геном прионного белка выживают и даже не имеют каких-то особо тяжелых дефектов, но у них много мелких странностей: от нарушенного суточного ритма до склонности к ишемии и судорогам.

Белковая вселенная

   Эволюция земной жизни основана в первую очередь на изменениях белков, инструкции по созданию которых записаны в белок-кодирующих участках ДНК. Сами по себе белки не являются репликаторами. Но они могут эволюционировать «по Дарвину», потому что их строение определяется информацией, записанной в молекулах ДНК – подлинных репликаторах, на эффективность размножения которых влияют свойства кодируемых ими белков. Фенотип[12] организма определяется в первую очередь белками. Поэтому если мы хотим оценить эволюционный потенциал земной жизни, то для начала необходимо выяснить, в каких пределах способны меняться – под действием мутаций и отбора – структура и функции белков.
   В рассказе Борхеса «Вавилонская библиотека» описана невообразимо огромная библиотека, содержащая абсолютно все возможные тексты определенной длины. При этом в библиотеке нет двух одинаковых книг. Схожий образ громадного, но все же конечного пространства последовательностей используют биологи, изучающие эволюцию белков (Maynard Smith, 1970)[13]. Это воображаемое пространство включает все возможные «тексты», записанные 20-буквенным аминокислотным «алфавитом». Например, для белка длиной в 300 аминокислот существует 20300 возможных последовательностей. По сравнению с этим числом количество атомов во Вселенной (примерно 1080) пренебрежимо мало.
   Каждая точка в пространстве последовательностей соответствует одному белку, а расстояние между точками отражает степень различий между двумя белками. Эволюцию белковой молекулы можно представить как движение в пространстве последовательностей.
   Каждой функции, выполняемой белками, соответствует некая область в пространстве последовательностей, в пределах которой любая точка – это белок, способный справиться с данной функцией. До тех пор пока эволюция белка идет без смены функции, его движение ограничено этой областью.
   Главный вопрос в том, насколько велики такие области и какова их структура. Теоретически они могут быть как сплошными полями, так и лабиринтами узких тропинок, разделенных «запретными зонами».
   Полезным дополнением к образу пространства последовательностей является образ ландшафта приспособленности, введенный в употребление в 1932 году выдающимся американским генетиком Сьюэлом Райтом (1889–1988). Каждой точке пространства последовательностей соответствует та или иная величина приспособленности. Если речь идет об аминокислотной последовательности белка, то приспособленность можно понимать как эффективность выполнения белком своей функции. Если речь идет о нуклеотидной последовательности генома, то приспособленность – это эффективность размножения организма с таким геномом. Принято представлять области высокой приспособленности в виде возвышенностей, низкой – в виде долин или ям. При этом вышеупомянутые «поля» приобретают вид горных плато, «тропинки» становятся хребтами, а «запретные зоны» – долинами и пропастями.

   Примерно так представляют себе биологи «ландшафт приспособленности». Два горизонтальных измерения символизируют «белковую вселенную», т. е. все возможные аминокислотные последовательности белка (или нуклеотидные последовательности ДНК, если речь идет о «генетической вселенной»). Вертикальное измерение отражает приспособленность. Эволюционируя путем накопления нейтральных или полезных аминокислотных замен, белок может двигаться по этому ландшафту горизонтально или вверх. Спуск в долины запрещен, потому что мутации, снижающие эффективность работы белка, отсеиваются отбором. В результате белок может оказаться в «ловушке локального максимума», т. е. застрять на одной из второстепенных вершин. Однако реальные ландшафты приспособленности, по-видимому, представляют собой не множество одиноких пиков, а лабиринты горных хребтов. Двигаясь по гребням, белок может обходить пропасти, но на это уходит много времени. Именно поэтому некоторые белки, унаследованные современными организмами от последнего общего предка всего живого, до сих пор так и не достигли предельного уровня несхожести и продолжают медленно расходиться в пространстве «белковой вселенной».

   Вредные мутации – это движение вниз по склону, полезные – путь наверх. Мутации нейтральные, не влияющие на приспособленность, соответствуют движению вдоль горизонталей – линий одинаковой высоты. Отбраковывая вредные мутации, естественный отбор мешает эволюционирующей последовательности двигаться вниз по ландшафту приспособленности. Поддерживая мутации полезные, отбор пытается загнать последовательность как можно выше[14].

Отбор – игра по правилам

   Методом случайного поиска (случайных блужданий) найти в необозримой «белковой вселенной» одну конкретную точку, соответствующую оптимальному выполнению белком данной функции, совершенно нереально. К счастью, такие оптимумы, как правило, – не точки, а обширные области. А главное, поиск оптимума в ходе эволюции осуществляется вовсе не методом случайных блужданий. Он идет методом направленного отбора. Направленность возникает благодаря тому, что случайные отклонения в «неправильную» сторону, ухудшающие рабочие качества белка, отбраковываются, отменяются и забываются, тогда как случайные отклонения в «правильную» сторону запоминаются и сохраняются.
   Если исходная последовательность уже находится у подножия некоей возвышенности на ландшафте приспособленности – там, где уже есть хотя бы небольшой наклон (это значит, что белок хотя бы в минимальной степени, но уже выполняет какую-то функцию), отбор загоняет последовательность на вершину горы с поразительной эффективностью. Это можно показать с помощью компьютерной программы, впервые описанной Ричардом Докинзом в книге «Слепой часовщик». Пусть в роли исходной последовательности выступает произвольный набор букв, например, такой:

   weiusdhsdklj dfg dfgghkjhjh qnlsvtnxuvsf qw kjhgj jfdjkfflmc

   Программа размножит эту последовательность в тысяче экземпляров, внося в нее случайные мутации с заданной частотой. Например, пусть каждая буква в каждой копии с вероятностью 0,05 мутирует, т. е. заменяется другой случайной буквой. В результате каждая двадцатая (в среднем!) буква у каждого потомка будет отличаться от родительской. Зададим оптимум, к которому нужно стремиться, – некую осмысленную фразу. Попробуем сначала прийти к оптимуму без помощи отбора, методом случайных блужданий. Для этого из 1000 потомков выберем одного наугад и снова размножим в 1000 экземпляров с мутациями. И еще раз, и еще.
   Вот что у нас получилось. Справа указаны номер поколения и степень отличия от целевой последовательности, т. е. удаленность от оптимума:

   weiusdhsdklj efg dfgghkjhjh qnlsvtnxuvsfuqt kjhgj jfdjkfflmc 1 1101
   weiusdhshklj efg dfgghkchjh qnlsvtxxuvmfuqt kjhgj jfdjkfflmc 2 1102
   weiusdhshqxj efg dfgghkchjh qnudvtxxuvnfuqt kjhgj jfdjkfflmc 3 1073
   weiusdhshqxj efg dfgghkchjh pnudvnxxuvnfuqt kjhgj jfdjkfflmc 4 1068
   weiuydhshqxjmefg dfgghgchjh pnudvnxxuvnfuqt kjhgj jfdjkfflmc 5 995
   …
   miokytvohujkuefhjefghhgcajtrjnfdqnxxutdzuftfihfgz ufdjkfszyc 21 1179
   miokytvohuwtuefhjefghhgcajyrjnfdqnxxutdzuftfiufgz ufdjkfszyc 22 1173
   …
   jzvsztfxtuggublusgidhpgxauyranrwqbwsjtdoxykfinfzvyufdoluszyh 51 1152
   jzvsztfxtuggublusgidhpgxauyranrwqjwsjtdoxykfinfzvyufdoluszyh 52 1144
   …
   pkvlrqsxoqrewqoidyofypjlsjvwcjxdjlkhbzdyonhdeyuydlusjzbmeeiu 99 1078
   pkvlrqsxoqoewqoidyofysjlsjvwcjxdjlkhbzdyonhdeyuydlusjubmeeiu 100 1073

   Бесполезно! За 100 поколений – ни малейшего прогресса, никакого приближения к оптимуму. Фраза осталась такой же бессмысленной, какой и была. Случайное блуждание в пространстве последовательностей, которое мы сейчас смоделировали, практически не дает шанса найти конкретную точку в белковой вселенной.
   Нет, конечно, будь у нас бесконечный запас времени, когда-нибудь мы все же наткнулись бы на оптимум. Когда, вот в чем вопрос. Мы использовали 26 букв латинского алфавита и пробел, итого 27 знаков. Длина фразы – 60 знаков. Оптимум – это одна комбинация из 2760 (~7,6×1085) возможных. Вариантов больше, чем атомов во Вселенной. Примерно столько поколений нам и потребуется, чтобы случайно наткнуться на нужную точку.
   К такому способу поиска вполне приложимы известные рассуждения об урагане, пролетевшем над свалкой, который ни за что не соберет из мусора «боинг-747», и об обезьяне, которая, бессмысленно стуча по клавиатуре, никогда не напишет «Войну и мир». Таким способом – и впрямь не напишет. К счастью для нас, эволюция идет вовсе не этим способом. Или, если быть совсем уж точными, не только этим способом.
   Мы все-таки не зря моделировали случайные блуждания – у них тоже есть аналог среди эволюционных процессов. Именно так идет нейтральная эволюция. Так меняются последовательности (аминокислотные или нуклеотидные), от которых приспособленность организма не зависит и которые поэтому не находятся под действием отбора.
   Между прочим, хоть блуждания и случайные, некие закономерности можно заметить и в этом случае. Обратите внимание, что эволюционирующая последовательность постепенно становилась все менее похожа на исходную. Фраза из поколения № 1 отличается от исходной только тремя знаками, в поколении № 2 мы видим уже семь отличий, в поколении № 4–13, в пятом поколении – 16 отличий. К 50-му поколению никакого сходства с исходной последовательностью не осталось. Но в течение первых 20–25 поколений сходство сохранялось, постоянно уменьшаясь. Поэтому мы могли по степени этого сходства примерно определить номер поколения, к которому принадлежит данная фраза. Мы могли, сравнив данную фразу с исходной и зная скорость мутирования, примерно оценить, сколько поколений разделяет эти две фразы! На этом принципе основан замечательный метод молекулярных часов, с которым мы познакомимся в следующем разделе. А пока вернемся к отбору.
   Изменим немного нашу программу. Пусть теперь для размножения выбирается не любая из 1000 последовательностей наугад, а лучшая – наиболее похожая на «оптимальную». Все прочее оставим как было. Запускаем программу и получаем следующее:

   wbiusdhsdkljvdfgfdbgghkjhjh qnlsvtnxuvsf qw kjhgjajfdjkfflmc 1 992
   jfiusdhsd ljvqfgfdbggbkjhjh qnlsvtnxuvsfyqw kjhgjajfdjkfflmc 2 844
   jfiusdhsd ljvqfgfdbggnkjhjh qnl vtnxuvsfyqw djhgjajfdjkfflmc 3 756
   jfiusdhsd ljvqqgfdbggnkjhjh qnj vtnx vsfyqw djhgjajfdjkfflmc 4 684
   jfiusdhsd ljrr gfdbggnkjhme qnj vtnx vsfyqw djhgjajfdjkfflmc 5 594
   …
   tdkfdrhsm vjlr nfdbgmu jhoe anw crbm hs ygj vqptjam vjjzbpnc 21 113
   tdkfdrhsm vjlr nfdbgku jhoe anw crbm hs ygj vqpteam vjjvbprc 22 104
   …
   tekfdrhom vjll rfaeiky jhoe any fobm hm tgd oqptehm vmjvepse 41 37
   tekfdriom vjll rfaeiky fhoe any fobm hm tgd oqptehm vmjvepse 42 32
   …
   tekectiom will readily fime any gobl hn thd oroteim universe 61 10
   tekectiom will readily fime any gobl in thd oroteim universe 62 9
   …
   selection will readily fime any goal in the orotein universe 73 3
   selection will readily fimd any goal in the orotein universe 74 2
   …
   selection will readily fimd any goal in the protein universe 87 1
   selection will readily fimd any goal in the protein universe 88 1
   selection will readily find any goal in the protein universe 89 0
   selection will readily find any goal in the protein universe 90 0

   Ну вот, совсем другое дело! Под действием отбора наша последовательность уверенно двигалась к оптимуму – взбиралась на пик ландшафта приспособленности – и достигла его в 89-м поколении, с чем мы ее и поздравляем.
   Главный урок из этих упражнений состоит в том, что эволюция под действием отбора совсем не похожа на попытки напечатать «Войну и мир», случайным образом нажимая на клавиши. Отбор – мощная организующая сила, которая придает эволюции направленность, формируя из хаоса случайных мутаций закономерный, упорядоченный результат.
   Но позвольте, не отступили ли мы от реальности, произвольно задав оптимальную последовательность – фразу, к которой нужно было стремиться? Не похоже ли это на «божественное вмешательство»?
   Вовсе нет. Для любой полезной функции, выполняемой белком при данных условиях (температуре, составе среды и т. д.) действительно существует одна или несколько оптимальных аминокислотных последовательностей, которые справятся с этой функцией лучше всего. Возможно, реального белка с такой последовательностью еще нет в природе – эволюция не успела его создать, – но ведь идеальная последовательность все равно существует, подобно тому как потенциально существовал химический элемент углерод со всеми своими свойствами еще до того, как первые атомы углерода начали синтезироваться в недрах звезд, вспыхнувших в молодой Вселенной. Отбор будет двигать эволюционирующую последовательность к этому идеалу независимо от того, есть уже на свете такие белки или им еще только предстоит появиться.
   В чем мы действительно погрешили против истины, так это в том, что в неявном виде ввели в модель несколько допущений о форме ландшафта приспособленности, сильно упрощающих реальность. Мы допустили, что ландшафт – это одна большая гора с гладкими склонами и единственной вершиной, причем любая случайная последовательность, с которой начинается эволюция, уже находится на склоне этой горы, так что движение «вверх» (к идеалу) повышает ее приспособленность. Нахождение на склоне означает, что исходная последовательность хоть чуть-чуть, хоть совсем плохо, но все-таки уже справляется с данной функцией.
   Рассмотренная модель справедлива лишь для ситуации, когда отбору уже есть за что «зацепиться», когда эволюционирующая последовательность уже на что-то годна.
   Как удается эволюционирущим последовательностям переходить с одной горы на другую и со склона на склон? Иными словами, как белок, уже приспособившийся выполнять какую-то функцию – начавший взбираться по склону одной из гор, – может приобрести другую функцию, т. е. перейти на другую гору? Как он преодолеет разделяющую их низменность?
   Это важный вопрос, и мы к нему еще вернемся. Ну а пока ограничимся несколькими замечаниями.
   Во-первых, действительно, чем выше белок забрался по одному склону, тем меньше у него шансов перейти на другой. Глубокие низины между горными массивами, соответствующими основным группам белковых функций – так называемым надсемействам белков, – как правило, непроходимы. Крайне редко удается преодолеть пропасть одним отчаянным прыжком – макромутацией. В подавляющем большинстве случаев такие прыжки в горной местности кончаются понятно чем. Но все же бывают и удачные приземления. И тогда всем на диво какой-нибудь фермент, миллиарды лет занимавшийся превращением одного углевода в другой, вдруг превращается в кристаллин – белок хрусталика глаза, а пищеварительный фермент трипсин – в белок-антифриз, защищающий кровь антарктических рыб от замерзания[15].
   Но это исключения. Как правило, эволюционное движение большого и сложного современного белка ограничено одним горным массивом – одной группой родственных функций. На больших высотах ландшафт приспособленности белков сильно разобщен, фрагментирован, так что с одного массива на другой попасть почти невозможно. Но вот на малых высотах, у подножья величественных горных массивов, простирается холмистая местность, передвигаться по которой простым и примитивным древним белкам было намного легче. Среди искусственно синтезированных коротких белковых молекул с произвольной последовательностью аминокислот можно найти молекулы, выполняющие – пусть и с низкой эффективностью – различные функции, выполняемые природными белками в клетке. Это значит, что, передвигаясь по этим низинам, можно наткнуться на предгорья какого-нибудь горного массива даже методом случайных блужданий!
   Скорее всего, основные функции белков, соответствующие белковым надсемействам, были «нащупаны» еще в самом начале эволюционного становления генетического кода и синтеза белка у древних РНК-организмов[16]. Потом эти функции бесконечно совершенствовались и подразделялись на множество вариаций. Эволюционирующие последовательности взбирались все выше по склонам «своих» горных массивов, разбредаясь по развилкам и отрогам, и чем выше они поднимались, тем меньше оставалось у них шансов перейти с однажды выбранной горной системы на какую-то другую.
   По-видимому, только для самых простых и коротких (но при этом все же полезных) белковых молекул существует реальная вероятность возникновения «из ничего», «на голом месте» – из случайной комбинации нуклеотидов, случайно закодировавших некоторую последовательность аминокислот. Такой способ формирования новых белков исчерпал себя еще в РНК-мире. С тех пор новые белки появляются только из старых – не с нуля, а путем модификации того, что есть. Это одно из главных правил эволюции. Почти все новое – это перекроенное старое.

Нейтральные мутации и генетический дрейф – движение без правил

   Ландшафт приспособленности – образ яркий и полезный, но, как и всякая модель, он несовершенен. Многие аспекты эволюционного процесса с его помощью отразить трудно или невозможно. Реальный ландшафт приспособленности переменчив (впрочем, как и реальные горные системы). Если один белок в клетке изменился, это хоть немного, но изменит свойства клетки, ее поведение и внутреннюю среду – а значит, и «требования», предъявляемые отбором к другим белкам. Их ландшафты приспособленности станут немного другими. Изменение одного вида в сообществе неизбежно повлияет на факторы отбора, действующего на другие виды, и т. д.
   Кроме того, трудно представить себе такой ландшафт, который точно отразил бы реальное соотношение вредных, полезных и нейтральных мутаций. Как правило, большинство мутаций нейтральны – по крайней мере у высших организмов, эукариот, у которых в геномах много участков, слабо влияющих на приспособленность. На втором месте по численности вредные мутации, на последнем – полезные. Нелегко вообразить склон такой формы, чтобы из каждой точки было больше разных путей, параллельных горизонту, чем путей, ведущих вверх или вниз. Но реальные склоны реальных ландшафтов приспособленности именно таковы.
   Нейтральные мутации – это по определению такие мутации, которые не влияют на приспособленность, или, что то же самое, не подвергаются действию отбора. Нам пора познакомиться поближе с этим самым распространенным в природе классом мутаций. Забудем на время о ландшафте приспособленности и обратимся к другой модели, которая описывает процессы, происходящие с генетическими вариантами (аллелями) в популяции.
   Допустим, у нас есть маленькая популяция мюмзиков из 40 особей. Для простоты примем, что мюмзики гаплоидны, т. е. имеют одинарный набор хромосом – один-единственнный экземпляр генома, а не два, как у нас с вами, диплоидных организмов. Достигнув возраста в один год, каждый мюмзик рожает нескольких детенышей, а потом сразу умирает от старости. Все детеныши одинаковые, но выжить из них могут только 40 – больше мюмзиков просто не помещается в старой железной бочке на дне пруда, где живет изучаемая популяция. Смертность детенышей случайна – ровно 40 случайно выбранных везунчиков станут взрослыми и через год произведут потомство.
   Поскольку смертность случайна, приспособленность мюмзиков определяется только их плодовитостью, т. е. числом детенышей. Плодовитость зависит от генотипа. Допустим, у мюмзика есть один ген, влияющий на плодовитость. Обозначим его буквой А. Между прочим, не смейтесь: такая модель вполне годится для изучения некоторых законов популяционной генетики.
   Некогда у всех мюмзиков был только один вариант (аллель) гена А. Обозначим его А1. Но потом у одной особи произошла мутация, и в результате появился второй вариант гена – аллель А2. Допустим (опять-таки для простоты), что в нашей популяции, когда мы приступили к ее изучению, у половины мюмзиков ген А был представлен первым вариантом, у другой половины – вторым. Таким образом, частота аллеля А2 равна 0,5 (q2 = 0,5) и частота аллеля А1 такая же (q1 = 0,5).
   Нам нужно ответить на вопрос: как будет меняться со временем частота аллеля A2, если мутация, которая привела к его возникновению, была нейтральной?
   Раз мутация была нейтральной, значит, плодовитость обладателей обоих аллелей одинакова. Допустим, они все рожают ровно по десять детенышей. Разумеется, потомство наследует родительский аллель гена А.
   Может показаться, что раз аллели имеют одинаковую приспособленность, то их так и останется поровну. Это неверный ответ. На рисунке(см. ниже) показан результат четырех запусков нашей модели. Мы видим, что частота А2 во всех четырех случаях хаотически колебалась (по-научному такие колебания как раз и называются случайными блужданиями). Блуждания продолжаются до тех пор, пока частота аллеля не упрется либо в верхнюю «точку невозврата» (q2 = 1, частота аллеля достигла 100 %, аллель зафиксировался в генофонде), либо в нижнюю (q2 = 0, частота упала до нуля, аллель элиминировался из генофонда).
   Так бывает всегда. Если аллель нейтрален, его частота будет «случайно блуждать» между нулем и единицей до тех пор, пока не упрется либо в верхний, либо в нижний предел. Рано или поздно нейтральный аллель либо зафиксируется (достигнет частоты 1), либо элиминируется – исчезнет из генофонда. Третьего не дано. Таким образом, блуждания хоть и случайны, их исход предсказуем. Мы точно знаем, что дело кончится либо фиксацией, либо элиминацией. Чем больше популяция, тем в среднем дольше придется ждать исхода[17], но он все равно неизбежен.


   Здесь самое время сказать, что случайные, не зависящие от приспособленности изменения частот аллелей называются генетическим дрейфом. Под властью дрейфа находятся все нейтральные мутации (а в маленьких популяциях отчасти также и вредные с полезными, но об этом позже).
   Можно ли вычислить вероятность того, что нейтральный аллель в конце концов зафиксируется, а не элиминируется? Да, это просто. В нашем примере аллели А1 и А2 исходно находились в равном положении, потому что у обоих была частота 0,5. Очевидно, что в такой ситуации шансы на фиксацию у них должны быть одинаковыми и равными 0,5. В половине случаев А1 зафиксируется, А2 элиминируется, в половине – наоборот.
   Ну а если конкурирующих нейтральных аллелей не два, а, скажем, четыре и начальные частоты у них тоже одинаковые (0,25)? В этом случае дело кончится фиксацией одного из аллелей и элиминацией трех остальных, причем для каждого аллеля вероятность фиксации равна 0,25. Таким образом, очевидно, что вероятность фиксации нейтральной мутации в будущем просто-напросто равна ее частоте в данный момент: Pfix = q.
   Если вы, дорогие читатели, еще не устали от этой примитивной математики, то позвольте познакомить вас еще с двумя простыми, интересными и полезными формулами.
   Сколько нейтральных мутаций будет фиксироваться в популяции в каждом поколении? (Имеются в виду мутации уже не в одном и том же, а в разных генах.) Если мы сумеем это вычислить, то получим прекраснейший инструмент – молекулярные часы. Тогда мы сможем по количеству нейтральных генетических различий определить, когда жил последний общий предок сравниваемых организмов.
   Вывод этой формулы – подлинный шедевр «биологической математики». Судите сами. Определим сначала, сколько новых мутаций появляется в популяции в каждом поколении. Будем считать для простоты, что подавляющее большинство мутаций нейтральны (это недалеко от истины). Ответ очевиден: U × N, где U – темп мутагенеза (среднее число новых мутаций у каждой новорожденной особи), N – численность популяции. Определить U можно, просто сравнивая геномы детей и родителей.
   Теперь нужно понять, какая часть из этих U × N только что появившихся мутаций в итоге зафиксируется. Это и будет искомая величина – темп фиксации нейтральных мутаций в генофонде популяции за одно поколение. Обозначим ее буквой V.
   Мы уже знаем, что вероятность фиксации мутации равна ее частоте: Pfix = q. Чему же равна частота только что появившейся мутации? Это совсем просто. Поскольку мутация только что появилась, она пока есть только у одной особи. Следовательно, ее частота равна 1/N. Вот, собственно, и все. Умножаем количество новых мутаций на вероятность фиксации каждой из них (т. е. на долю мутаций, которые в итоге зафиксируются) и получаем ответ: V = U × N × 1/N. Поразительно! Численность популяции волшебным образом сокращается, и величина N уходит из уравнения. Мы приходим к выводу, что темп фиксации нейтральных мутаций не зависит от численности и равен просто-напросто скорости мутагенеза: V = U. Не знаю, как вы, дорогие читатели, а мы, биологи, приходим в восторг от такой красоты.
   Нам остался один шаг до молекулярных часов. После того как два вида, произошедшие от общего предка, разделились, в их генофондах независимо накапливаются нейтральные мутации. За время t (измеряемое в поколениях) первый вид накопит V × t = U × t нейтральных мутаций, и второй вид накопит столько же. Совместными усилиями они накопят 2U × t нейтральных отличий друг от друга. Зная темп мутагенеза U и подсчитав число различий между геномами сравниваемых видов (обозначим его буквой D), определяем время жизни их последнего общего предка: t = D/2U. Это и есть знаменитые молекулярные часы.
   Если бы темп мутагенеза и скорость смены поколений были одинаковыми у всех живых существ, все было бы совсем просто. Но они, конечно, неодинаковы, поэтому в вычисления приходится вносить поправки. А еще есть проблема насыщения: в какой-то момент – обычно по прошествии десятков, а чаще сотен миллионов лет – гены разделившихся когда-то видов оказываются настолько «переполнены» нейтральными различиями, что величина D перестает расти, хотя нейтральные мутации продолжают фиксироваться. Ниже мы увидим пример исследования, показавшего, как уровень сходства между «случайно блуждающими» последовательностями приблизился к минимально возможному и дальше снижаться уже не мог.
   К счастью, разные участки генома накапливают нейтральные изменения с очень разной скоростью[18]. Быстро меняющиеся участки ДНК используются для датировки недавних событий, а те, что меняются медленно, хороши для датировки событий глубокой древности.

Дрейф и отбор: кто кого?

   Впрочем, все так хорошо и просто только в больших популяциях. В маленьких ситуация сложнее, потому что отбор и дрейф – две главные движущие силы эволюции – начинают конкурировать друг с другом за контроль над слабовредными и слабополезными мутациями.
   Посмотрим, как это происходит. Воспользуемся для этого той же моделью с мюмзиками. Изменим только характер мутации, которая привела к появлению аллеля А2. До сих пор мы считали, что мутация была нейтральной. Поскольку она была нейтральной, обладатели аллелей А1 и А2 имели одинаковую плодовитость. Давайте теперь предположим, что мутация была полезной, что она повысила плодовитость мюмзиков на 5 %. Это можно смоделировать так: пусть мюмзики с генотипом А1 рожают по 20 детенышей, а мюмзики с генотипом А2 – по 21. Начальная частота аллеля А2 пусть будет по-прежнему равна 0,5. Только теперь мы рассмотрим популяции с разной численностью (N).
   На рисунке (см. ниже) показано, как будет меняться частота А2 в том случае, если его носители имеют пятипроцентное адаптивное преимущество. Мы видим, что в большой популяции (N = 5000) частота А2 неуклонно растет, приближаясь к единице. Так работает отбор в идеальных для него условиях, т. е. в больших популяциях, где влияние дрейфа на полезные и вредные аллели пренебрежимо мало. Форма у кривой довольно правильная, и это наводит на мысль, что ее можно описать какой-нибудь математической формулой. Это действительно так, но выводить формулу мы не будем, чтобы не утомить читателей (а любители математики могут сделать это самостоятельно)[19].
   Перед нами, между прочим, важнейший эволюционный процесс – аллельное замещение, т. е. вытеснение более приспособленным аллелем менее приспособленного. Процесс идет не слишком быстро. В большой популяции, например состоящей из миллиона особей, для того чтобы зафиксировалась новая полезная мутация, дающая 5-процентное адаптивное преимущество, требуется около 560 поколений. А ведь 5 % – это серьезное преимущество. Такие мутации – редкость. Ждать, пока зафиксируется мутация с преимуществом в 1 %, придется уже 2800 поколений! Тем не менее в большой популяции отбор «чувствует» даже самую незначительную разницу в приспособленности. Это обеспечивает эффективную (пусть и медленную) фиксацию слабополезных мутаций и элиминацию слабовредных[20].


   На среднем графике мы видим, какая судьба ждет такую же полезную мутацию, повышающую приспособленность на 5 %, в популяции меньшего размера (N = 200). Частота полезного аллеля и в этом случае росла и в конце концов достигла 1 (мутация зафиксировалась), но путь был труден и извилист. Пожалуй, нашей мутации могло и не повезти, ее шансы на фиксацию не были стопроцентными.
   Наконец, на правом графике мы видим, что происходит с точно таким же полезным аллелем в совсем крошечной популяции (N = 30). На рисунке показаны результаты двух запусков модели. В одном случае мутация зафиксировалась, в другом – элиминировалась. Не правда ли, картинка похожа на результат работы дрейфа, а не отбора?
   Так оно и есть. В этом заключается главный урок, который мы можем извлечь из наших экспериментов. Чем меньше популяция, тем слабее в ней власть отбора и тем могущественнее дрейф. В маленьких популяциях слабополезные и слабовредные мутации начинают вести себя фактически как нейтральные. Их частоты «случайно блуждают», пока не наткнутся на верхний или нижний порог. В маленьких популяциях, где царствует дрейф, небольшие различия в приспособленности становятся невидимыми для отбора. Поэтому слабовредная мутация запросто может зафиксироваться, а слабополезная – элиминироваться.
   Хорошо это или плохо? В большинстве случаев, конечно, плохо. Потеря слабополезных мутаций мешает маленькой популяции приспосабливаться к меняющимся условиям. Бесконтрольное накопление слабовредных мутаций и вовсе может поставить ее на грань вымирания. Именно в этом, между прочим, видят биологи одну из причин того, что крупные животные вымирают в среднем чаще, чем мелкие. У крупных животных, таких как носороги или слоны, популяции не могут быть такими же большими, как у мышей или насекомых. Это снижает приспособляемость крупных животных.
   Но у этой медали есть и обратная сторона. У маленьких популяций больше шансов выйти из «ловушки локального оптимума», т. е. сползти с невысокого пика ландшафта приспособленности и взобраться на другой, повыше. Ведь отбор гонит организмы вверх и только вверх. Если популяция велика и малейшее различие в приспособленности «заметно» для отбора, спуск по склонам становится невозможен. Однажды взобравшись на одинокий холм, большая популяция уже никогда с него не слезет. Что касается дрейфа, то он ведет организмы по ландшафту приспособленности хаотическим образом, не замечая подъемов и спусков. Если популяция невелика и дрейф силен, у организмов есть шанс иногда двигаться не только вверх, но и немного вниз (и в сторону). Спустившись в ложбинку, организмы могут «обнаружить», что отсюда есть другой, более перспективный подъем. Если, конечно, не вымрут раньше, чем на него наткнутся.

Вселенная древних белков продолжает расширяться

   В 2010 году журнал Nature опубликовал интересную статью об эволюционном движении белков по ландшафтам приспособленности (Povolotskaya, Kondrashov, 2010). Авторы работы решили сравнить аминокислотные последовательности 572 древних белков, которые имелись уже у последнего общего предка всего живого[21] и были унаследованы его потомками, а также нуклеотидные последовательности соответствующих генов 836 прокариот (бактерий и архей). Эти белки называют древними, потому что после более чем 3,5 млрд лет эволюции в телах разнообразных потомков LUCA они до сих пор сохранили сходство своих аминокислотных последовательностей (вплоть до поразительного 40-процентного сходства рибосомных белков L14 у бактерий и архей) и продолжают выполнять те же функции, что и у Луки.

   Расширение физической и белковой Вселенной. Стрела времени направлена сверху вниз. Слева: в ходе расширения физической Вселенной увеличиваются расстояния от произвольно выбранного объекта (например, Земли) до других объектов, причем скорость удаления пропорциональна расстоянию. Справа: в ходе расширения «белковой вселенной» дочерние молекулы удаляются в пространстве последовательностей от исходной точки, которая соответствует одному из белков LUCA. При этом дистанции между произвольно выбранным объектом (например, белком, принадлежащим эволюционной линии, которая привела к кишечной палочке E. coli) и другими объектами (родственными белками других эволюционных линий) постепенно растут. Однако белки с данной функцией не могут выйти за пределы «своей» подобласти в пространстве последовательностей – иначе это будет уже другой белок, выполняющий другую функцию (эволюционные события, связанные со сменой функции белка, в обсуждаемой работе не рассматриваются). Границы этой функциональной области показаны внутренним кругом. Рано или поздно расходящиеся белки достигнут этой границы, и дальнейшее расхождение станет невозможным. Стрелочками показано направление движения белков в пространстве последовательностей. По рисунку из Povolotskaya, Kondrashov, 2010.

   Для начала Поволоцкая и Кондрашов решили выяснить, достигли уже эти белки максимального расхождения в пространстве последовательностей или их расхождение (накопление различий) все еще продолжается. Сохранение сходства после 3,5 млрд лет независимой эволюции, казалось бы, говорит о том, что возможности изменения этих белков ограниченны. Можно предположить, что области в пространстве последовательностей, соответствующие их функциям, невелики и предел расхождения давно достигнут. Но возможно и другое объяснение. Эти области могут быть велики, но труднопроходимы. Например, они могут представлять собой лабиринт из узких хребтов, разделенных пропастями, и поэтому на «освоение» всего доступного пространства не хватило миллиардов лет, прошедших со времен LUCA.
   Исследователи проводят аналогию между эволюцией белков и расширением Вселенной. Эдвин Хаббл обнаружил, что галактики удаляются друг от друга, причем расстояние между галактиками положительно коррелирует со скоростью их разлетания. Экстраполируя эту тенденцию в прошлое, Хаббл пришел к выводу, что разлетание должно было начаться из одной точки. Эта идея легла в основу теории Большого взрыва. Нечто подобное происходит и с белками, расходящимися от общего предка – исходного белка с данной функцией, который был закодирован в геноме LUCA.

   Принцип анализа белковых последовательностей, примененный Поволоцкой и Кондрашовым. Использовались четверки гомологичных белков, родственные отношения между которыми изображены в виде дерева. Анализ такой четверки позволяет понять, растет или снижается сходство между первыми двумя белками и четвертым. В данном случае считается, что у первого белка «предковая» (имеющаяся у белков 2 и 3) аминокислота R в 11-й позиции (выделена жирным шрифтом) заменилась на E, что привело к росту сходства первого белка с четвертым, т. е. к их сближению в пространстве последовательностей. У второго белка «предковая» аминокислота K в 3-й позиции (выделена полужирным шрифтом) заменилась на Y, что привело к снижению сходства второго белка с четвертым, т. е. к их расхождению в пространстве последовательностей. По рисунку из Povolotskaya, Kondrashov, 2010.

   Чтобы выяснить, закончилось ли уже расширение «вселенной древних белков» или оно продолжается до сих пор, авторы применили оригинальные методы анализа белковых последовательностей. Нам будет полезно с ними ознакомиться – хотя бы для того, чтобы понять логику биоинформатики, молодой науки, занимающейся сравнением и осмыслением генетических текстов.
   Использовались четверки гомологичных (происходящих от одного предка) и выполняющих одну функцию белков. Первые два белка в каждой четверке – это близкородственные молекулы с похожими аминокислотными последовательностями. Эти два белка назывались «сестринскими», и именно их эволюция анализировалась в рамках данной четверки.
   Третий белок отличался от сестринских белков сильнее, чем они друг от друга. Он выполнял роль «внешней группы», позволяя понять, какие аминокислотные замены произошли в первом, а какие во втором сестринском белке. Например, если у внешнего белка в данной позиции стоит аминокислота K (лизин) и такая же аминокислота стоит здесь у первого из двух сестринских белков, а у второго в этом месте находится другая аминокислота (например, Y – тирозин), то считалось, что K в данной позиции – это «предковое», исходное состояние, а у второго сестринского белка произошла замена K на Y.
   К этим трем белкам добавлялся четвертый, еще более далекий от сестринских, чем третий. Если у четвертого белка в данной позиции стоит аминокислота K (как на рисунке), то делался вывод, что у второго сестринского белка произошло эволюционное изменение, увеличившее дистанцию между белками 2 и 4: белки разошлись. Если бы у четвертого белка здесь стояла аминокислота Y, то был бы сделан вывод, что в результате изменения, затронувшего белок 2, белки 2 и 4 сблизились.
   В общей сложности было обработано 13,6 млн таких четверок. Для каждой четверки определялось число замен, ведущих к сближению последовательностей и к их расхождению. По соотношению этих двух величин можно понять общую тенденцию: расходятся ли белки, сближаются или балансируют вокруг некого постоянного уровня сходства последовательностей.
   Оказалось, что даже у наиболее удаленных друг от друга гомологичных белков тенденция к расхождению значительно преобладает над тенденцией к сближению. Следовательно, «вселенная древних белков» продолжает расширяться и пределы областей, соответствующих их функциям, за 3,5 млрд лет так и не были достигнуты. Эволюция этих белков была крайне медленной. Что же ее сдерживало? Решению этой проблемы посвящена вторая часть статьи, приводящая на память другой рассказ Борхеса – «Сад расходящихся тропок».

Лабиринт расходящихся тропок

   Обычного отрицательного отбора, отсеивающего вредные мутации, явно недостаточно для того, чтобы объяснить медленную эволюцию древних белков. Предположение о том, что каждая аминокислота, стоящая в данной позиции, влияет на приспособленность одинаковым образом независимо от «контекста» (т. е. от того, какие аминокислоты стоят в других позициях в том же белке или в других белках, взаимодействующих с ним), соответствует представлению о легкопроходимом ландшафте приспособленности (см. рисунок ниже). Но со времен LUCA в каждом синонимичном сайте (так называют те нуклеотиды в цепи ДНК, изменение которых не влияет на структуру кодируемого белка) произошло уже свыше 100 замен. Синонимичные нуклеотидные замены – это пример движения по ровным горизонтальным поверхностям ландшафта приспособленности. Из этого следует, что в случае хорошей проходимости ландшафта изучаемые белки давным-давно должны были освоить всю потенциально доступную им область в пространстве последовательностей, и тогда мы не наблюдали бы их продолжающегося расхождения.
   Резко уменьшить проходимость ландшафта приспособленности – превратить его в лабиринт узких тропок или горных хребтов – может эпистаз. Так называют взаимное влияние разных мутаций (аллелей) на вредность или полезность друг друга. Замена одной аминокислоты может менять эффективность работы белка не сама по себе, а в зависимости от комбинации других аминокислот, занимающих определенные позиции в том же белке. Также эффект мутации может зависеть от других белков, находящихся в непосредственном взаимодействии с белком-мутантом. Иными словами, для определения смысла биологического текста важен контекст. В этом и состоит суть эпистаза. Мы еще не раз встретимся с этим явлением в последующих главах.
   Наличие эпистаза предполагает, что многие аминокислотные замены являются допустимыми только в определенном окружении. Если окружение (контекст) неподходящее, то данная замена будет снижать приспособленность, и отбор ее выметет. Это явление в эволюции белков изучалось ранее на конкретных примерах[22]. Если эпистаз широко распространен, белок может добраться до многих потенциально достижимых пунктов в пространстве последовательностей только долгим обходным путем.
   Для проверки гипотезы о действенности эпистаза в эволюции белков Поволоцкая и Кондрашов придумали хитроумный тест, основанный на сопоставлении темпов накопления «сближающих» и «разводящих» мутаций с дистанциями между белками. Основная идея состояла в том, что гипотезы о наличии и отсутствии эпистаза дают противоположные предсказания о частоте закрепления сближающих и разводящих мутаций. Если влияние эпистаза невелико, то у двух близких белков темп накопления разводящих мутаций должен быть высоким, а по мере расхождения последовательностей он должен снижаться (если ландшафт приспособленности легкопроходимый, то белки сначала свободно и быстро «блуждают» по ровному плато, соответствующему данной функции, уходя все дальше от исходной точки, но по мере приближения к его краям их расхождение замедляется). Темп накопления сближающих мутаций при этом должен оставаться примерно постоянным. Если же эпистаз оказывает сильное влияние на эволюцию белков, все должно быть наоборот: разводящие мутации должны накапливаться с примерно постоянной скоростью, а темп накопления сближающих мутаций по мере расхождения белков должен снижаться.

   Пространство последовательностей можно изобразить в графа, вершины которого соответствуют разным последовательностям (в данном случае показаны последовательности из двух нуклеотидов), а ребра – единичным эволюционным событиям (нуклеотидным заменам). В первом случае (a) ландшафт приспособленности представляет собой сплошное ровное плато: все 16 последовательностей имеют одинаково высокую приспособленность и все возможные мутации разрешены (не будут отбракованы отбором). Два кратчайших пути, соединяющие последовательности AT и GC, состоят всего из двух мутационных шагов (жирные стрелки). Во втором случае (б) половина последовательностей имеют пониженную приспособленность (отмечены жирными кругами). При этом снижение приспособленности определяется не конкретным нуклеотидом в конкретной позиции, а уникальной комбинацией обоих нуклеотидов (т. е. имеется эпистаз). Это резко снижает проходимость ландшафта: число доступных траекторий уменьшается и кратчайший путь между двумя пунктами (например, от AT к GC) удлиняется. В третьем случае (в) тоже половина последовательностей имеют пониженную приспособленность, но эпистаза нет: нуклеотиды A и G во второй позиции снижают приспособленность независимо от состояния первой позиции. Отсутствие эпистаза способствует тому, что ландшафт остается легкопроходимым, и от AT к GC можно прийти всего за два шага, как и в первом случае. По рисунку из Povolotskaya, Kondrashov, 2010.

   Проведенные расчеты подтвердили гипотезу о сильном влиянии эпистаза на эволюцию белков. Оказалось, что темп накопления разводящих мутаций не зависит от дистанции между белками. В каждый момент времени лишь около 2 % аминокислотных позиций могут быть изменены без снижения приспособленности, хотя в долгосрочной перспективе более 90 % позиций могут измениться – но к этим изменениям нужно идти долгими обходными путями по лабиринту узких «горных хребтов» ландшафта приспособленности. У близких, недавно разошедшихся белков темп накопления сближающих мутаций очень высок, потому что у близких белков аминокислотный «контекст» для каждой позиции является сходным. Поэтому та аминокислота, которая недавно стояла в данной позиции, с большой вероятностью может «вернуться» на свое место, и это не снизит приспособленность. Напротив, у сильно различающихся белков данная позиция уже находится в разных контекстах, и поэтому «возвращение» аминокислоты, которая стояла здесь у далекого предка, скорее всего, снизит приспособленность, и мутация будет отсеяна.
   В снижении вероятности сближающих мутаций по мере расхождения белков проявляется правило необратимости эволюции. Чем сильнее разошлись белки, тем меньше у них шансов снова стать похожими (мы еще вернемся к этому правилу в главе 5).
   Таким образом, ландшафт приспособленности древних белков отличается повышенной «складчатостью». Он похож на сложный лабиринт узких горных хребтов, передвигаться по которому эволюционирующие белки могут лишь очень медленно. Мало того, некоторые узкие мостики норовят обрушиться в бездну после того, как по ним «прополз» эволюционирующий белок, – совсем как в голливудских боевиках, – что придает эволюции элемент необратимости.
   Между прочим, полученные результаты – еще один аргумент в пользу единства происхождения всего живого. Подобно тому как разбегающиеся галактики указывают на существовавший в прошлом единый центр, из которого все объекты во Вселенной начали свое движение, так и продолжающееся «разбегание» древних белков указывает на их происхождение от единого предка.

Глава 2. Полезные ошибки

   Все здание теории эволюции, а значит и биологии в целом, основано на том, что некоторые случайные наследственные изменения оказываются полезными, т. е. повышают эффективность размножения (по-другому называемую приспособленностью). Термин «полезные мутации» означает только это. В эволюционной биологии бессмысленно говорить о пользе, не имея при этом в виду размножение. Если организм-мутант лучше подлаживается к своей среде, лучше себя чувствует и дольше живет, но при этом проигрывает в размножении, то мутация, какой бы полезной она ни казалась, является вредной. Обычно все эти вещи коррелируют друг с другом, но не всегда.
   Для биолога существование полезных мутаций – самоочевидный, банальный факт. Однако многие непрофессионалы склонны усматривать здесь парадокс. Ведь мутации – это ошибки, сбои в системе копирования наследственной информации. Из повседневного опыта мы знаем, что случайные ошибки ничего не улучшают, а только портят. Разве можно улучшить текст, внося в него случайные ошибки?
   Это рассуждение верно, если текст совершенен. Действительно, не будем же мы подправлять «Евгения Онегина» или кое-что переписывать в «Женитьбе Фигаро». А если текст черновой и небрежный? Тогда можно и исправить, и улучшить, в том числе путем внесения случайных изменений с отбором удачных вариантов.
   Рассмотренная в главе 1 модель с эволюционирующими фразами показывает, как постепенно текст становится лучше. Если нет даровитого цепкого редактора, то особенно важно, чтобы текст тиражировался во множестве копий. В каждую из них вносятся разные ошибки, и для последующего тиражирования раз за разом отбираются лучшие варианты.
   В отличие от «Евгения Онегина» биологические тексты редко бывают совершенными[23]. К тому же мир имеет обыкновение меняться. То, что было превосходным вчера, сегодня уже устарело и никуда не годится. Если вчера пределом мечтаний считалось обладание игровой приставкой, то сегодня продвинутый подросток должен иметь последнюю модель айпада (кое-кто из отставших и устаревших уже путают айпад и айпод). Так и в мире природы – меняется биологическое окружение, климат, очертания континентов, и нужно постоянно им соответствовать… Правда, в природе перемены обычно происходят медленнее, чем в современной моде и технологиях, но из этого правила тоже есть исключения.
   Итак, мутации – случайные изменения ДНК – бывают полезными. Процесс приспособления неостановим и бесконечен. Но общие рассуждения, как бы громко, уверенно и веско они ни были высказаны, не убедят нашего вдумчивого и скептического читателя. Поэтому постараемся показать на простых примерах, что полезные мутации – это повседневная реальность. В этой главе мы познакомим читателя с несколькими ясными случаями.

Один верный шаг – и на полях вырастает рис

   Опадение семян зависит от гена sh4. Для дикого риса O. nivara характерен доминантный аллель[24] этого гена, соответствующий опадающим семенам. Очевидно, что в дикой природе полезны именно опадающие семена. Рецессивный аллель, характерный для домашнего риса, обеспечивает неопадающие семена. В 2006 году ученым из Мичиганского университета (США) удалось выяснить, какую функцию выполняет кодируемый этим геном белок и как он контролирует опадение семян (Li et al., 2006). Обычно в том месте, где должно произойти отделение (например, спелых плодов или отслуживших листьев), формируется «отделительный слой» из клеток особого строения. У дикого риса между зерном и плодоножкой тоже образуется отделительный слой, состоящий из мелких тонкостенных клеток. У культурного риса этот слой формируется только частично, поэтому зерно остается прочно прикрепленным к плодоножке. Так вот, выяснилось, что ген sh4 экспрессируется там и только там, где формируется отделительный слой. Значит, sh4 участвует в организации функционального отделительного слоя. У культурного риса его функциональность нарушилась, и рис приобрел нужные земледельцу свойства.
   В последовательности этого гена, расположенного на четвертой хромосоме, удалось определить нужную мутацию. Оказалось, что это одна-единственная нуклеотидная замена: тимин (T) дикого риса заменился на гуанин (G) домашнего, что привело к замене аминокислоты лизина на аспарагин в соответствующем белке. Неужели всего одна аминокислота – и такой чудесный результат? Именно так. И чтобы не было сомнений – а они всегда остаются, пока не выполнишь проверку или не заглянешь в ответы в конце задачника, – ученые ввели в геном культурного риса «дикий» вариант гена sh4. У культурного риса созрели колосья с неудобными, опадающими семенами.
   Исследование показало, что доместикация риса была связана с отбором растений, несущих мутантный вариант гена sh4. Мутация немного «подпортила» механизм формирования отделительного слоя, хотя и не вывела его из строя полностью, иначе отделительный слой не формировался бы вовсе, что создало бы большие проблемы при обмолоте. По-видимому, небольшие изменения регуляторных генов сыграли важную роль и в доместикации других растений. Соответствующие данные уже имеются, например, по кукурузе и томатам.
   Итак, вот первый конкретный пример полезной мутации. Кстати, почему мы говорим, что она была полезной? Для дикого риса мутация, не позволяющая созревшему зерну своевременно отделиться от колоса, была бы однозначно вредна – она снизила бы число посеянных семян, т. е. снизила эффективность размножения. Но «ландшафт приспособленности» изменился для риса, когда его размножение (сбор урожая и сев) взяли в свои руки земледельцы. Теперь семена, прочно держащиеся в колосе, получили больше шансов добраться до мест обмолота, а значит, быть посеянными и дать потомство. Бессознательный отбор, осуществлявшийся ранними земледельцами, дал преимущество мутантным растениям с неопадающими семенами, т. е. сделал растения с этим признаком более приспособленными по сравнению с «диким типом» – растениями с опадающими семенами. Это, собственно, и означает, что мутация, мешающая семенам опадать и вредная для диких злаков, стала полезной для тех растений, размножение которых люди взяли в свои руки.
   Можно также заметить, что новый полезный признак – между прочим, признак важный, составляющий главное отличие культурного злака от дикого, – на молекулярном уровне был связан не с созданием чего-то нового, а всего лишь с повреждением, порчей чего-то старого. Мутация повредила механизм формирования отделительного слоя. Это соответствует общепринятому – и в целом верному – представлению о том, что случайные мутации, как и любые «случайные ошибки», с большей вероятностью могут испортить что-то сложное, чем создать. Однако, как видим, повреждение на молекулярном уровне не обязательно сопровождается упрощением на уровне организма. Оно может приводить к появлению новых полезных признаков и обеспечивать адаптацию к меняющимся условиям. Эволюция, как всякий вероятностный процесс, обычно выбирает самые простые (вероятные) пути из всех возможных. Если можно улучшить приспособленность, всего лишь упростив систему (например, выведя из строя какой-то ген), то именно это, скорее всего, и произойдет[25].
   Кто-нибудь может подумать, что так просто все получается лишь с искусственным отбором, если в дело вмешивается человек со своим разумением и целеполаганием. Это не так. Есть превосходные примеры полезных мутаций и среди природных объектов. Скажем, таких, как американские белоногие хомячки.

Десять тысяч лет, три нуклеотида и защитная окраска

   Американские белоногие хомячки, называемые также оленьими мышами (Peromyscus maniculatus), в норме имеют темную окраску, однако представители этого вида, обитающие в районе с очень светлой почвой (Песчаные Холмы в штате Небраска), окрашены светлее своих сородичей. Хомячки с Песчаных Холмов стали хрестоматийным примером эволюции адаптивных признаков. Этому способствовали два обстоятельства. Во-первых, адаптивность (полезность) светлой окраски не вызывает сомнений: хищные птицы гораздо лучше видят на светлом фоне темного хомячка, чем светлого. Во-вторых, Песчаные Холмы – молодое геологическое образование: они сформировались после отступления ледника около 10 тыс. лет назад. Это дает основания думать, что мы имеем дело с адаптацией, появившейся – в эволюционном масштабе времени – совсем недавно. Однако для понимания механизмов адаптации важно выяснить ее генетические основы.
   Известно, что окраска шерсти млекопитающих зависит от распределения двух пигментов: черно-коричневого эумеланина и рыжего феомеланина. Клетки меланоциты, отвечающие за окраску волоса, могут поочередно синтезировать то один, то другой пигмент по мере роста волоса. В результате волос получается неоднородно окрашенным. Часто кончик и основание волоса темные (эумеланиновые), а посередине имеется светлая (феомеланиновая) полоса. И вот любопытно, что же определяет разницу в окраске у темных и светлых хомячков? Если вглядеться попристальней, то окажется, что никаких специальных ухищрений и особой цветовой палитры не требуется. Всего лишь нужно в каждой шерстинке светлых хомячков расширить феомеланиновую полосу. И больше ничего! Элементарно! И вот американские генетики из Гарвардского и Калифорнийского университетов решили изучить, что же стоит за этим элементарным решением (Linnen et al., 2009).
   Известно, что на окраску шерсти может влиять ген Agouti. Сигнальный белок, кодируемый этим геном, подает команду меланоцитам синтезировать феомеланин вместо эумеланина. Влияние мутаций Agouti на окраску шерсти подробно изучено на домовых мышах (Mus musculus). Оказалось, что мутанты с отключенным геном Agouti имеют черную окраску, а повышенная активность гена приводит к очень светлой окраске. Светлый аллель – доминантный по отношению к темному.
   Чтобы проверить, действительно ли светлая окраска хомячков с Песчаных Холмов определяется доминантной мутацией, ученые скрещивали разномастных родителей. Все потомство от скрещивания получилось светлым, и эта гипотеза подтвердилась.
   Дальнейшие эксперименты показали, что непосредственным результатом мутации является повышенная активность Agouti в первую неделю жизни хомячат, т. е. в тот период, когда у них отрастает шерсть. Максимальная активность Agouti приходится на четвертый день жизни как у темных, так и у светлых хомячков, однако абсолютная величина этой активности (измеряемая по количеству матричных РНК, считанных с гена) у светлых особей с Песчаных Холмов в несколько раз выше.
   После была проведена весьма трудоемкая и кропотливая работа – секвенирование нуклеотидной последовательности Agouti у сотни хомячков из темных и светлых лабораторных линий, а также у диких зверьков из зоны смешения темной и светлой популяций. В результате было выявлено около 20 полиморфных сайтов, т. е. таких участков гена, которые не у всех особей одинаковы. Существуют эффективные методы статистического анализа нуклеотидных последовательностей, которые позволяют обнаруживать следы действия положительного отбора на те или иные участки генов. Иными словами, отличать изменения ДНК, которые поддерживались отбором (т. е. полезные, адаптивные), от нейтральных изменений, которые распространялись в популяции за счет дрейфа. Применив эти методы, ученые пришли к выводу, что ключевая мутация, в результате которой мыши приобрели светлую окраску, находится только в одном месте, а изменения в остальных 19 полиморфных сайтах тоже внесли свой вклад, но менее значительный.
   Эта мутация находилась лишь в одном из 20 сайтов. Она состояла в выпадении трех нуклеотидов, кодирующих аминокислоту серин. Удивительно, что такой важный признак, как маскирующая окраска, может определяться всего тремя нуклеотидами! Какая поразительная несоразмерность: с одной стороны, три молекулы, их даже в микроскоп не видно, а с другой стороны – невидимость для врага, долгая жизнь, многочисленная семья и потомство… Когда сравниваются такие категории, то кажется, что три молекулы – это ничто, не могут они определить хомячьего счастья. Но эта несоразмерность – мнимая.
   Следы естественного отбора
   Влияние естественного отбора на генофонд популяции трудно наблюдать в природе из-за медленности процесса. Непосредственно наблюдать отбор, действовавший на популяцию в прошлом, и вовсе невозможно без машины времени. К счастью, это и не обязательно, потому что отбор, нацеленный на тот или иной локус (участок молекулы ДНК), оставляет в геномах легкоразличимые следы. Мы можем их увидеть, потому что разрешающая способность молекулярного метода исследования теперь фантастическая – один нуклеотид. Еще 15–20 лет назад это казалось чудом, волшебством. Геномы изучали с помощью скрещиваний мутантов, составляли генные карты, разрешение такого метода было не выше частей хромосом или групп генов, но уж никак не одного нуклеотида. Это все равно что заменить 20-кратную лупу на электронный микроскоп. И если уж эволюционные механизмы работают с наследственным материалом – последовательностями ДНК и РНК, то при такой разрешающей способности молекулярного метода мы это увидим.
   Следы работы эволюционных механизмов бывают двух типов. Каждая аминокислота кодируется или одним, или, чаще, несколькими определенными тройками (триплетами) нуклеотидов. Если аминокислота кодируется одним-единственным триплетом, то замена любого нуклеотида в триплете приведет к замене аминокислоты; если она кодируется несколькими триплетами, то замена одного нуклеотида может привести либо к замене аминокислоты, либо к замене триплета другим из возможного набора, а аминокислота останется той же. Замена нуклеотида без замены аминокислоты называется синонимичной, а если аминокислота меняется, то получим несинонимичную, или значимую, замену. Если, сравнивая какой-то ген у двух организмов, мы видим, что среди наблюдаемых различий преобладают значимые замены, это указывает на действие положительного отбора, который поддерживал полезные мутации в этом гене. Если, наоборот, резко преобладают синонимичные замены, а значимых нет или очень мало, – это след отрицательного отбора, который отбраковывал все значимые мутации, потому что они оказывались вредными. Промежуточное соотношение указывает на нейтральную эволюцию. Таким образом, отношение синонимичных и несинонимичных замен свидетельствует о направлении отбора, и это первый тип «следов», оставляемых в геноме естественным отбором.
   Пример «селективного выметания». У такс по сравнению с обычными собаками резко понижен генетический полиморфизм на участке третьей хромосомы, включающем ген FGFR3. Это указывает на то, что отбор, осуществлявшийся собаководами, выводившими новую породу коротконогих охотников на лис (было это менее 100 собачьих поколений назад), благоприятствовал какой-то мутации на этом участке хромосомы. В условиях отбора на «таксовость» некая мутация, произошедшая в этом участке, оказалась для собак «полезной», поскольку она обеспечивала успешное размножение, тогда как щенки, не имевшие этой мутации, отбраковывались селекционерами. Что же это за ген – FGFR3? Имеет ли он какое-то отношение именно к таксам? Оказывается, имеет. Белок, кодируемый этим геном, называется рецептором фактора роста фибробластов. Мутации в нем приводят к разнообразным нарушениям развития скелета, в том числе к укорочению конечностей. По рисунку из Pollinger et al., 2005.

   Второй тип следов выявляется при изучении уровня полиморфизма (разнообразия) нуклеотидных последовательностей в популяции. Если мы отсеквенируем геномы множества представителей какого-нибудь вида и сравним их между собой, то увидим, что уровень полиморфизма, т. е. индивидуальных различий между геномами, распределен по геному неравномерно. Где-то полиморфизм выше – это те участки генома, в которых большинство мутаций оказываются нейтральными, поэтому полиморфизм свободно накапливается. Скорее всего, это просто не очень нужные участки, «генетический балласт». Где-то генетическое разнообразие ниже – это важные участки генома, в которых большинство мутаций оказываются вредными и удаляются очищающим отбором. Ну а в некоторых местах – и это самое интересное – мы увидим резкое, чуть не до нуля, снижение полиморфизма. В таких участках нет (или очень мало) не только значимых, но и синонимичных различий. Как правило, это означает, что здесь поработала «метла» положительного отбора. Это явление так и называют – selective sweep, т. е. «выметание посредством отбора». В середине участка с резко пониженным полиморфизмом обычно сидит какая-то полезная мутация. Она возникла не очень давно у какой-то особи, а потом быстро распространилась под действием положительного отбора. Вместе с мутацией автоматически распространялись и прилегающие к ней участки ДНК. Это явление называют сцепленным наследованием. До появления полезной мутации уровень полиморфизма в данном участке хромосомы был, скорее всего, примерно таким же, как на соседних участках. Но, когда отбор начинает распространять полезную мутацию, он автоматически распространяет и ее окружение со всеми индивидуальными (и в основном нейтральными) особенностями, присущими вовлеченному в сценарий участку ДНК. Повезет тем нейтральным аллелям, которые находились рядом с полезной мутацией. Остальные нейтральные вариации исчезнут из генофонда, а выживут те, что были у счастливого обладателя первого экземпляра мутантного гена. Как будто все варианты, кроме одного, из данного фрагмента генома «выметаются».
   Со временем следы метлы стираются за счет накопления новых нейтральных мутаций. Таким образом, глубокие ямы на графике распределения полиморфизма указывают на относительно недавние случаи действия положительного отбора.
   Как в первую неделю жизни хомячат работает мутантный сигнальный белок Agouti – пока неизвестно. Зато удалось показать, что данная мутация, по всей видимости, появилась и начала распространяться в популяции совсем недавно – позже, чем отступил ледник и сформировались Песчаные Холмы с их светлым грунтом. В пользу этого свидетельствуют результаты статистических тестов. В частности, оказалось, что «светлые» варианты гена Agouti (в которых отсутствуют вышеупомянутые три нуклеотида) меньше варьируют по остальным полиморфным сайтам, чем «темные» варианты. Уровень полиморфизма в окрестностях полезной мутации относительно низок. Это типичный пример «выметания посредством отбора», и этого не должно было бы наблюдаться, если бы данная мутация (выпадение трех нуклеотидов) существовала в популяции в качестве нейтральной задолго до того, как появились Песчаные Холмы и она стала полезной.
   Исследование показало, что быстрое формирование новых адаптаций может происходить за счет новых мутаций, которые появляются уже после того, как в них «возникла потребность». В тот момент, когда условия среды (а значит, и направление отбора, действующего на популяцию) вдруг меняются, в популяции может не оказаться подходящих генетических вариантов, которые были до сих пор нейтральными, а теперь стали полезными. Скорее всего, светлая окраска была не нейтральной, а однозначно вредной для хомячков, пока они жили в районах с темной почвой. Но, когда образовались Песчаные Холмы – подходящая для жизни хомячков территория со светлой почвой, – ситуация сразу изменилась, и изредка появляющиеся в популяции светлоокрашенные мутанты, которых отбор до сих пор безжалостно отсеивал, получили свой шанс.
   Отбору все равно
   Есть другие случаи адаптивных изменений окраски, где механизм адаптации на молекулярном уровне хорошо изучен. Один из таких примеров – скальные щетинистые прыгуны (Chaetodipus intermedius), грызуны, обитающие в пустынях юго-запада США, где участки светлого грунта чередуются с черными лавовыми полями. Как читатели уже догадались, на светлых участках преобладают светлоокрашенные животные, на лавовых полях – темноокрашенные. Показано, что отбор в данном случае осуществляется хищными птицами, в том числе совами, которые лучше видят на темном фоне светлую добычу, а на светлом – темную. Самое интересное, что у обитателей разных лавовых полей отбор зафиксировал разные мутации, приводящие к одному и тому же фенотипическому эффекту – темной шерсти. На одном из лавовых полей все черные грызуны несут мутацию в гене меланокортинового рецептора MC1R (это один из генов, регулирующих синтез черного пигмента эумеланина)[26]. У прыгунов, обитающих на лавовых полях, удаленных на 700 км от первого, черная окраска определяется мутациями в других генах (Majerus, Mundy, 2003).
   Отбору все равно, мутацией какого гена вызвано изменение окраски. Никто не проектирует эволюционное изменение, все происходит само собой. Если возникает мутация, фенотипический эффект которой здесь и сейчас повышает эффективность размножения (приспособленность) ее носителей, то оные носители, эффективно размножаясь, передают мутацию по наследству своим потомкам. А это автоматически ведет к росту частоты встречаемости данной мутации в генофонде. Вот и все. Как видите, можно точно описать дарвиновский эволюционный механизм, не используя слово «отбор» (дабы не вводить читателя лишний раз в искушение, ведь в привычных метафорических формулировках типа «отбор поддерживает» или «отбору все равно» легко усмотреть то, чего там на самом деле нет, – приписывание отбору свойств разумного деятеля, имеющего какие-то цели и планы).
   Перед нами классический пример адаптации животных к внезапно изменившимся природным условиям. Чтобы приобрести полезный признак, хомячкам потребовалось изменить всего один ген, а если еще точнее – всего лишь три нуклеотида в нем. И в результате мутации хомячки обрели защитную окраску. Эта мутация, как и в случае с культурным рисом, стала полезной после изменения условий среды и направленности отбора, а до того она была для организмов вредной. В геноме остались следы работы отбора, и мы умеем их находить и анализировать. И мы видим, что все случилось не по взмаху волшебной палочки, а здесь действовал мелочный и постепенный положительный отбор.
   Но полезная мутация может быть связана не только с дефектом того или иного потерявшего актуальность гена, как в случае с рисом, или с изменением активности гена на определенной стадии развития организма, как в случае с хомячками. Очень своевременной может стать и замена аминокислоты в активном центре фермента, в результате которой фермент приобретает способность работать с новыми веществами. Следующий пример – как раз из этой серии.

Малярийный плазмодий о пользе точечных мутаций

   Начиная с 1960-х годов по всему миру распространились штаммы малярийного плазмодия, устойчивые к хлорохину – лекарству, которое прежде было самым эффективным противомалярийным средством. Хлорохин впервые синтезировали в 1934 году. Благодаря своей эффективности и дешевизне он вскоре стал главным оружием медиков в борьбе с малярией, оттеснив хинин и другие препараты на второй план. Но уже через четверть века, в конце 1950-х годов, почти одновременно в двух точках земного шара – в Колумбии и Таиланде – появились штаммы возбудителя малярии Plasmodium falciparum, устойчивые к хлорохину. В течение последующих 20 лет они распространились из этих двух центров по всем территориям, где встречается малярия.
   Генетики установили, что причиной устойчивости являются мутации в одном из генов паразита. Белок, кодируемый этим геном, получил название PfCRT (Plasmodium falciparum Chloroquine Resistance Transporter). Этот белок находится в мембране, окружающей пищеварительную вакуоль паразита – пузырек, в котором происходит переваривание гемоглобина. По аминокислотной последовательности белка PfCRT было ясно, что это мембранный белок, выполняющий транспортную функцию.

   Схема распространения штаммов малярийного плазмодия Plasmodium falciparum, устойчивых к хлорохину.

   У «нормальных», восприимчивых к хлорохину плазмодиев хлорохин проникает в пищеварительную вакуоль путем диффузии. Внутри вакуоли pH ниже, чем снаружи. Попав в кислую среду, молекула хлорохина присоединяет к себе дополнительный протон и приобретает положительный заряд. Это лишает ее возможности выйти обратно из вакуоли – молекула оказывается в ловушке. В результате хлорохин накапливается в вакуоли, мешая паразиту переваривать гемоглобин.
   Но у паразитов, устойчивых к хлорохину, лекарство в пищеварительной вакуоли не накапливается. Поскольку устойчивость связана с изменениями в транспортном белке, логично было предположить, что благодаря этим мутациям белок PfCRT приобрел способность откачивать хлорохин из вакуоли. Чтобы проверить это предположение, ученые ввели ген PfCRT из устойчивого плазмодия в яйцеклетки лягушки и заставили его там работать (Martin et al., 2009). Новый чужеродный белок встроился в наружную мембрану яйцеклетки и занялся тем, что он умел, – стал перекачивать хлорохин из внешней среды через мембрану в цитоплазму яйцеклетки. Процесс шел, если значение pH в окружающей среде было примерно такое же, как в пищеварительной вакуоли плазмодия. Тот же белок, взятый у чувствительного к хлорохину плазмодия, не перекачивал хлорохин ни при каких условиях.
   Таким образом, устойчивость паразитов к хлорохину объясняется тем, что белок PfCRT в результате мутаций приобрел новую функцию. Исходный вариант этого белка отвечал за транспорт каких-то других веществ из пищеварительной вакуоли в цитоплазму. Каких именно – пока неизвестно.
   Существует несколько мутантных вариантов белка PfCRT, обеспечивающих устойчивость к хлорохину. У всех этих вариантов есть только одна общая особенность – замена лизина треонином в определенной позиции в молекуле белка. Аминокислота, стоящая в этой позиции, входит в состав активного центра, который отвечает за узнавание и связывание транспортируемой молекулы. Лизин, в отличие от треонина, имеет положительный заряд. По-видимому, два положительных заряда и у хлорохина, и у транспортера не позволяют молекулам соединиться; а если у транспортера заряд активного центра становится нейтральным, то пожалуйста – белок-транспортер начинает работу.
   На примере приспособления малярийного плазмодия к хлорохину мы познакомились с одним из магистральных (наиболее вероятных, простых и часто реализуемых) путей приобретения белками новых функций. Работа большинства белков в клетке связана со специфическим распознаванием определенных молекул. Фермент безошибочно «узнает» свой субстрат – молекулу, которую он должен преобразовать. Антитело распознает свой антиген (чужеродный белок или углевод). Транскрипционный фактор[27] находит на длинной молекуле ДНК свой сайт связывания – последовательность нуклеотидов, к которой он прикрепляется, чтобы регулировать активность соседнего гена. Рецептор избирательно связывается со «своим» сигнальным веществом. Транспортный белок узнает молекулу, которую он транспортирует с одной стороны мембраны на другую… Специфическое распознавание (называемое также сродством) обеспечивается свойствами активного центра белка, который должен подходить к субстрату как замок к ключу: во-первых, по форме, во-вторых – по распределению положительных и отрицательных зарядов. Конфигурация активного центра, как правило, зависит от небольшого числа «ключевых» аминокислот.
   Мутация, изменившая одну-две аминокислоты в активном центре, с большой вероятностью изменит специфичность белка, так что он начнет связываться с другими субстратами. Скорее всего, единичная мутация изменит спектр субстратов не очень сильно, т. е. новые субстраты будут похожи на старые. Способность узнавать старые субстраты при этом может сохраниться, а может и пропасть. К сожалению, мы не знаем, каковы были старые субстраты транспортного белка PfCRT и сохранил ли он сродство к ним после того, как приобрел способность связывать хлорохин. Но то, что он изменил свою специфичность и приобрел новую функцию из-за замены аминокислоты в активном центре, не вызывает сомнений. То, что эта мутация оказалась полезной для паразита в новых условиях, когда его повсеместно травили хлорохином, тоже не нуждается в пояснениях (и, к сожалению, неважно, что думает заболевший пациент или врач, прописавший ему хлорохин).
   В иммунной системе позвоночных появление рецепторных белков с новыми функциями поставлено «на поток». Лимфоциты используют для создания новых антител и Т-клеточных рецепторов, необходимых для обезвреживания бактерий, вирусов и прочих паразитов, чисто «дарвиновский» механизм: внесение случайных мутаций в активный центр (так называемую вариабельную область антитела) с последующим отбором и размножением удачных вариантов. Об этом подробно рассказано в книге «Рождение сложности».
   Защита от биологического оружия
   Множество примеров классической «эволюции по Дарвину» стало известно в ходе изучения приспособлений наших природных врагов – вирусов, болезнетворных бактерий, вредителей – к тем средствам, которые мы используем для борьбы с ними. Малярийный плазмодий – это один из таких. Но имеются и другие. К сожалению.
   Травить насекомых-вредителей обычными ядами (пестицидами) – гиблое дело как в прямом, так и в переносном смысле. Во-первых, трудно разработать яд, вредный только для данного насекомого и больше ни для кого. Во-вторых, насекомые быстро приспосабливаются к ядам. Они хорошо научились этому за 300 млн лет сопряженной эволюции с растениями, которые испокон веков пытались защищаться от вредителей при помощи ядов-алкалоидов. Что же удивительного в том, что за последние 50 лет зарегистрировано более 2500 случаев адаптации насекомых-вредителей к различным пестицидам?
   Более перспективным средством контроля численности вредителей (в первую очередь бабочек) считаются бакуловирусы. Эти вирусы обладают несколькими замечательными свойствами, которые делают их почти идеальным биооружием против вредителей. Бакуловирусы безопасны для всего живого, кроме насекомых определенного вида, имеют прочную белковую оболочку, устойчивы во внешней среде, и поэтому ими можно просто опрыскивать деревья при помощи обычных распылителей. Зато «свои» виды насекомых бакуловирусы прилежно заражают и доводят до смерти. До недавних пор не было случаев выработки насекомыми устойчивости к бакуловирусам. Ежегодно в мире бакуловирусами обрабатывают 2–3 млн га.
   Для борьбы с яблонной плодожоркой Cydia pomonella в Западной Европе с успехом использовался мексиканский штамм вируса CpGV (Cydia pomonella granulovirus). Кстати, это одно из очень немногих инсектицидных средств, которые еще не запрещены в цивилизованных странах. Но гром все-таки грянул: начиная с 2003 года из разных садоводческих хозяйств Германии и Франции стали поступать тревожные сообщения о том, что проверенный препарат перестает действовать.
   Германские генетики немедленно приступили к изучению проблемы. В 13 яблоневых садах в Южной Германии было установлено непрерывное наблюдение за ситуацией. Выяснилось, что многие популяции вредителя действительно приобрели устойчивость к вирусу. Это привело к снижению эффективности вирусного препарата в 100-1000 раз (иными словами, для достижения «исходного» уровня смертности гусениц необходимо увеличить дозировку от 100 до 1000 раз). В 2005 году уже появились популяции, устойчивость которых выросла в 100 тыс. раз по сравнению с исходной (Asser-Kaiseret al., 2007).
   Одна из устойчивых популяций начиная с 2003 года подвергалась классическому генетическому анализу: бабочек скрещивали, размножали потомство от разных пар, определяли устойчивость к вирусу в разных линиях. Выяснилось, что популяция генетически неоднородна: наряду с устойчивыми особями в ней есть и какая-то доля неустойчивых. Для удобства исследований генетики выделили «чистую линию» устойчивых бабочек. Результаты скрещивания этой линии с «контролем» – бабочками, сохранившими восприимчивость к вирусу, – поначалу выглядели противоречивыми. В одних случаях устойчивость к вирусу вела себя как доминантный признак, в других – как рецессивный, в одних – как сцепленный с полом, в других – как несцепленный.
   После дополнительных экспериментов и многочисленных перепроверок картина прояснилась. Оказалось, что трудности были связаны, во-первых, с тем, что доминантность признака зависит от концентрации вируса (при низких концентрациях признак доминантен, при высоких – рецессивен)[28], во-вторых, характер действия связан с полом: зараженные самцы и самки погибают на разных стадиях жизненного цикла. Поэтому, например, гусеницы, которых считали «выжившими» после 7– или 14-дневного эксперимента, в действительности могли быть уже «генетически мертвыми», так как потеряли способность к окукливанию.
   В итоге стало ясно, что полезная мутация, определяющая устойчивость к вирусу, локализована в половой хромосоме Z (у бабочек, как у птиц, мужской набор половых хромосом – ZZ, женский – WZ). При низких концентрациях вируса устойчивый аллель (Zr) ведет себя как доминантный, а «нормальный», не дающий устойчивости к вирусу аллель (Zs), – как рецессивный. Это значит, что самцы, гетерозиготные по этому признаку (генотип ZrZs), при низких концентрациях вируса остаются живы. Гомозиготные самцы ZrZr, естественно, тоже выживают, ZsZs – погибают. Самки имеют только одну копию хромосомы Z, поэтому те, у которых генотип ZrW, выживают, а ZsW – погибают.
   При высоких концентрациях вируса у самок все остается по-прежнему, а вот для самцов ситуация меняется. Им теперь уже не хватает для выживания одной копии «гена устойчивости», и выжить могут только гомозиготы (ZrZr), а гетерозиготы (ZrZs) погибают. Таким образом, устойчивость к вирусу из доминантного признака превращается в рецессивный.
   Такой способ наследования признака создает идеальные условия для его быстрого распространения и закрепления в популяциях. На начальном этапе распространения новой полезной мутации, пока носители мутантного аллеля редки, скорость распространения мутации под действием отбора будет максимальна именно в том случае, если мутация доминантна и сцеплена с полом. Эти условия создают сами фермеры, опрыскивающие свои сады малыми концентрациями вируса. На втором этапе, когда частота мутантного аллеля уже успела увеличиться, его дальнейшее распространение будет происходить наиболее быстро, если он рецессивен. И фермеры сами делают его рецессивным: они видят, что червивых яблок становится больше, и увеличивают дозировку препарата. Таким образом, садоводы выступают в качестве фактора, ускоряющего эволюцию. Дело заканчивается полной фиксацией (закреплением) аллеля Zr и исчезновением из популяции аллеля Zs (именно это и произошло в вышеупомянутых популяциях, где устойчивость к вирусу выросла в 100 тыс. раз).
   Исследователи указывают на необходимость разработки мер, препятствующих распространению генов устойчивости в популяциях вредителей. Нарождающаяся научная дисциплина, призванная заниматься разработкой таких мер, называется «прикладная эволю ционная биология». Один из многообещающих методов борьбы с выработкой устойчивости состоит в повышении генетического разнообразия применяемых вирусов. Используемые сейчас в садоводстве вирусы CpGV генетически очень однообразны. Ситуацию можно исправить, если дать возможность самим вирусам немного поэволюционировать.

Полезные мутации переключателей

   Устойчивость к ядам, вирусам, бактериям и прочим паразитам, защитная окраска, превращение опадающих семян в неопадающие – все это примеры простых адаптаций, для развития которых бывает достаточно одной-двух удачных мутаций, поддержанных отбором. Более глубокие преобразования складываются из десятков и сотен подобных «мелочей». Одна простая полезная мутация может изменить ландшафт приспособленности для организма (или вывести его в новую область этого ландшафта) – например, изменить взаимоотношения организма со средой, сделав возможной жизнь в условиях, доселе неприемлемых, – и в результате какие-то другие мутации, прежде бывшие вредными, станут полезными и рано или поздно зафиксируются, открыв возможности для новых изменений.
   Поскольку для крупных эволюционных преобразований требуется последовательное закрепление множества мутаций, такие изменения трудно «расшифровать» на молекулярном уровне, а уж пронаблюдать воочию и вовсе невозможно из-за длительности процесса. Те случаи, которые все-таки удается расшифровать, – это, по-видимому, редкие, нетипичные случаи, когда крупное изменение обеспечивается всего несколькими мутациями. Но такие случаи есть, и мы пока не знаем наверняка, так ли уж мала их роль на больших – эволюционно значимых – отрезках времени. Мы познакомимся с одним из таких случаев, когда всего две мутации обеспечили интересное и важное адаптивное приобретение у многоклеточного животного – нематоды (круглого червя). В результате двух мутаций нематоды приобрели способность к самооплодотворению – стали гермафродитами. Этот пример важен нам также для того, чтобы показать, как в ходе эволюции подстраиваются друг к другу разные гены, регулирующие определенную функцию.
   У большинства нематод, как и у многих других животных, пол определяется генетически, при помощи половых хромосом. Если в оплодотворенном яйце две X-хромосомы, из яйца разовьется самка, если одна – самец (Haag, 2005). Однако у двух наиболее изученных видов нематод, Caenorhabditis elegans и C. briggsae, особи с двумя X-хромосомами – не самки, а гермафродиты. Их гонады (половые железы) на поздних личиночных стадиях производят спермии. Нематоды утратили в ходе эволюции жгутики, поэтому и спермии у них безжгутиковые. Они похожи на амеб и передвигаются при помощи псевдоподий. У гермафродитов безжгутиковые спермии поздних личинок переползают в специальные хранилища – сперматеки – и здесь ждут своего часа. Гонады взрослых гермафродитов производят уже не спермии, а яйцеклетки. Они могут быть оплодотворены как собственными спермиями из сперматеки, так и спермиями самца в результате спаривания.
   Предки C. elegans и C. briggsae были нормальными раздельнополыми червями. Это следует, в частности, из того, что все прочие виды рода Caenorhabditis – раздельнополые. По-видимому, гермафродитизм у C. elegans и C. briggsae является «эволюционно молодым», новым признаком. Чтобы разобраться, как он возник, понадобились выдумка, знание геномов нескольких видов нематод и эксперименты, осуществленные американскими биологами (Baldi et al., 2009). Вот как это было.
   Для начала уточним, какие гены работают при формировании половых различий у нематод. Наличие одной (а не двух) X-хромосом у самцов служит триггером, включающим синтез белка HER-1, который ингибирует белок TRA-2. Подавление активности TRA-2 через пару промежуточных шагов приводит к уничтожению белка TRA-1, функция которого состоит в том, чтобы отключать ряд ключевых генов, направляющих развитие по «мужскому» пути (в том числе ген fog-3, контролирующий сперматогенез[29]. У гермафродитов белок HER-1 не образуется, но они все равно производят спермии, потому что активность гена tra-2 на стадии личинки подавляется белками FOG-2 и GLD-1. Таким образом, гермафродиты получаются из-за введения в игру дополнительного правила, связанного с регуляцией гена tra-2.
   Запутались? Ничего страшного, это в порядке вещей. Регуляторные сети, управляющие развитием животных, как правило, сложны, громоздки и неоптимальны[30]. К счастью, их не нужно учить наизусть никому, кроме студентов соответствующих специальностей. Чтобы облегчить дело, можно представить устрашающее описание из предыдущего абзаца в виде графической схемы (см. следующую страницу).
   На таких схемах стрелочками обозначают положительные влияния (включение гена, активация белка), а «тупичками» – отрицательные (ингибирование белка, подавление активности гена).
   Так вот, зная все это, исследователи подумали, что можно попробовать превратить самок раздельнополого вида C. remanei в гермафродитов, подавив активность какого-нибудь гена, блокирующего сперматогенез. Например, гена tra-2.
   Начали они с того, что отключили tra-2 при помощи РНК-интерференции[31]. В результате из яиц с двумя X-хромосомами развились вместо самок обыкновенные самцы, производящие нормальные спермии, но никаких яйцеклеток.

   Схема регуляции развития пола у нематоды C. elegans, у которой вместо самок гермафродиты.

   Тогда ученые справедливо рассудили, что они, видимо, перестарались. Ведь у настоящих гермафродитов активность гена tra-2 хоть и снижена, но не до нуля. Когда эту ситуацию удалось воспроизвести у C. remanei, уменьшив экспрессию tra-2, на свет появились животные, которых авторы назвали псевдогермафродитами. Тело у них было «женское», но в гонадах формировались одновременно и яйцеклетки, и спермии. Правда, эти существа оказались неспособны к самооплодотворению (отсюда и приставка «псевдо»). После скрещивания с самцом превдогермафродиты откладывали оплодотворенные яйца, хоть и в меньшем количестве, чем обычные самки. Это значит, что яйцеклетки у них более или менее нормальные, а неспособность к самооплодотворению, скорее всего, объясняется дефектами спермиев.
   Действительно, спермии псевдогермафродитов оказались нормальны по всем параметрам, кроме одного: они неактивны, никуда не ползут, и в частности не перебираются в сперматеки.
   У обычных нематод спермии активируются (начинают ползать) под воздействием белков, содержащихся в семенной жидкости. Сохранили ли спермии псевдогермафродитов способность активироваться под действием этих белков? Чтобы это проверить, авторы скрещивали псевдогермафродитов с самцами C. elegans. Самцы C. elegans охотно спариваются с самками C. remanei, но эти браки бесплодны (как-никак два вида разошлись, судя по показаниям молекулярных часов, около 80 млн лет назад, а для развития генетической несовместимости обычно хватает нескольких миллионов лет[32]). Идея такого спаривания как раз и состояла в том, чтобы половые клетки от разных видов не сливались, но при этом псевдогермафродиты могли получить нормальные белки семенной жидкости.
   И когда после этого адюльтера псевдогермафродиты C. remanei отложили оплодотворенные яйца, некоторые из них оказались жизнеспособными! Из них вывелись нормальные самки C. remanei (не псевдогермафродиты, потому что им никто не подавлял активность гена tra-2). Это означает, что спермии у псевдогермафродитов получились нормальными, не хватает только активирующих белков.
   Это открытие сузило круг потенциальных генов-мишеней, на которые нужно воздействовать, чтобы превратить псевдогермафродитов в полноценных гермафродитов. «Подходящим» геном оказался swm-1, который кодирует белок, подавляющий активность других белков – протеаз, активирующих спермии. Ген swm-1 отвечает за предотвращение преждевременной активации спермиев у самцов C. elegans, но у него есть и другие функции. Ученые понизили активность этого гена у псевдогермафродитов – и те, к большой радости исследователей, приобрели способность к самооплодотворению.
   Таким образом, для появления нового признака – гермафродитизма – достаточно уменьшить активность двух генов, входящих в два разных регуляторных каскада. Для этого нужны две мутации. Изменение активности того или иного гена в результате случайной мутации – дело самое обычное. Проблема в другом: одновременное возникновение двух мутаций, полезных только вместе, но не по отдельности, крайне маловероятно. Могли ли они появиться последовательно или это равносильно преодолению пропасти в два прыжка? Исследователи рассмотрели два возможных сценария.

   1. Сначала произошла мутация, уменьшившая активность swm-1 у самок, что позволяет активировать собственные спермии (если они есть). Эта мутация поначалу была нейтральной, потому что самки еще не умели производить спермии. В дальнейшем возникла мутация, понизившая активность tra-2. Эта мутация сразу оказалась полезной (т. е. была поддержана отбором), потому что превратила самок в самодостаточных гермафродитов (о полезности гермафродитизма см. ниже). Но могла ли первая мутация не принести вреда, если известно, что ген swm-1 многофункционален? И вот тут-то на помощь приходит знание геномов изучаемых червей (недаром в последние годы биологи столько сил и средств тратят на прочтение геномов всевозможных тварей). Оказывается, в геномах раздельнополых видов есть только одна копия swm-1, а у гермафродитных есть еще и вторая, немного отличающаяся копия. По-видимому, становлению гермафродитизма способствовала дупликация (удвоение) этого гена, что и позволило снять «адаптивный конфликт». Одна из копий изменилась, чтобы обеспечить активацию спермиев у гермафродитов, а вторая продолжила выполнение остальных функций[33].
   2. Второй сценарий начинается с мутации, снизившей активность tra-2. Это привело к появлению псевдогермафродитов. Лишь после этого возникла и закрепилась мутация, снижающая активность swm-1. Однако псевдогермафродиты фактически являются всего лишь неполноценными самками: к самооплодотворению они не способны, а с ролью самок справляются хуже, чем настоящие самки. Поэтому на первый взгляд кажется, что отбор должен был отсеять первую мутацию. Но вспомним, что самки C. remanei привлекательны для самцов других видов, а спаривание с этими самцами дает им возможность самооплодотвориться. Эта особенность могла стать «мостиком», с помощью которого эволюционирующий вид сумел преодолеть опасный промежуточный этап и дождаться возникновения второй мутации. В некоторых ситуациях псевдогермафродиты, способные к самооплодотворению после спаривания с самцами других видов, могли иметь адаптивное преимущество – например, когда численность популяции критически снижалась.

   Таким образом, при ближайшем рассмотрении оказывается, что червям не нужно было «преодолевать пропасть в два прыжка». Там все-таки были мостики.
   Изменение активности гена в сторону уменьшения или увеличения может произойти в результате самых разных мутаций. Это могли быть мутации в регуляторных областях самих генов tra-2 и swm-1, или мутации генов-регуляторов, управляющих их работой, или мутации регуляторов регуляторов, и т. д. Важно, что в такой ситуации – когда оказывается выгодно уменьшить или увеличить экспрессию какого-либо гена – вероятность того, что случайная мутация, меняющая активность гена, окажется полезной, а не вредной, приближается к 1/2, т. е. становится чрезвычайно высокой. Скорее всего, именно поэтому очень многие «прогрессивные» эволюционные преобразования, как теперь выясняется, были связаны с изменениями уровня активности генов, а не их белок-кодирующих последовательностей. Между прочим, это относится и к эволюции человека (Gilad et al., 2006).
   Появление новых признаков путем изменения активности генов – один из магистральных путей эволюции. Почему? Да прежде всего потому, что это просто. В инструкциях по устранению неисправностей в работе электроприборов неизменно присутствует «мудрый совет», раздражающий многих: проверьте, включена ли вилка в розетку. За ним кроется универсальный принцип: во многих случаях нужного эффекта можно добиться, манипулируя только выключателями и не развинчивая весь механизм.
   Конкретные мутации, ответственные за снижение активности генов tra-2 и swm-1 у предков C. elegans и C. briggsae, возможно, были разными. Например, известно, что у гермафродитов первого вида в подавлении активности tra-2 участвует ген fog-2, отсутствующий у второго вида. Предки C. briggsae утратили ген fog-2, вероятно за ненадобностью. У этого вида ключевую роль в обеспечении нормального сперматогенеза у гермафродитов играет другой ген – she-1. Этот пример показывает, что в ходе эволюции «переключатели» генетических регуляторных каскадов могут меняться, в то время как структура и функции каскадов остаются прежними.
   Это относится и к механизмам определения пола. Разделение на самцов и самок есть у большинства животных. Соответственно, есть и генетические «программы» (большие и сложные) развития по мужскому и женскому пути. Однако переключатели, направляющие развитие по одному из двух путей, часто меняются в ходе эволюции. Например, у тех же нематод многие виды перешли от хромосомной детерминации пола к «средовой», т. е. пол у них зависит не от генов, а от условий, в которых проходит развитие. Мы теперь понимаем, что такие эволюционные изменения относятся к числу высоковероятных. Точно так же вы можете заменить кнопку электрического выключателя в своей комнате на систему последовательно и параллельно соединенных тумблеров, реле или повесить шнурок с кисточкой, не меняя при этом проводку и люстру. Управлять освещенностью, возможно, станет удобнее, но сам «фенотип» от этого не изменится: свет по-прежнему будет или включен, или выключен.
   Ну и последнее: зачем вообще кому-то понадобилось переходить к гермафродитизму? Как могли мутации, превратившие самок в гермафродитов, оказаться полезными для предков C. elegans и C. briggsae? Дело в том, что в некоторых ситуациях гермафродитизм дает очевидное преимущество[34]. Например, если участки, пригодные для жизни нематод данного вида, встречаются очень редко (это вполне справедливо для представителей рода Caenorhabditis) и вероятность того, что хотя бы один червь попадет на новый, незаселенный участок, очень мала, то вероятность того, что на этот участок попадут сразу два червя – самец и самка, – будет и вовсе ничтожной. Естественно, в такой ситуации преимущество получат черви, способные размножаться без посторонней помощи, путем самооплодотворения. Или, на худой конец, с помощью самцов других видов.

Гены взаимной дружбы

   В книге «Рождение сложности» немало говорилось об эволюционной роли симбиоза. На одних мутациях и отборе можно уехать далеко, но возможность комбинировать эволюционные «достижения» разных организмов в одном симбиотическом сверхорганизме открывает еще более впечатляющие перспективы. Впрочем, чтобы наладить с кем-то эффективный симбиоз, без мутаций и отбора тоже не обойтись. Такие договоры на гербовой бумаге не подписываются, тут нужно тщательно приладиться друг к другу.
   Одним из таких межорганизменных «договоров» является симбиоз наземных растений с почвенными грибами и бактериями. Эволюционный успех наземных растений во многом был обеспечен именно этими взаимовыгодными отношениями: грибы и бактерии снабжают растение соединениями азота и фосфора, получая взамен углеводы, образуемые растением в ходе фотосинтеза. Ведь сами наземные растения так и не научились фиксировать азот.
   Самой древней разновидностью такого симбиоза является микориза, известная в двух вариантах: более простая эктомикориза (гриб не проникает внутрь растительных клеток) и эндомикориза, или арбускулярная микориза, при которой гифы гриба врастают внутрь клеток корня. Судя по палеонтологическим данным, арбускулярная микориза существовала уже у древнейших наземных растений, робко пытавшихся освоить негостеприимную сушу 450 млн лет назад, в ордовикском периоде. Весьма вероятно, что без симбиоза с грибами эти попытки были бы обречены на провал – или, что еще вероятнее, их бы не было вовсе. Некоторые данные указывают на то, что симбиоз с грибами зародился у зеленых водорослей, предков наземных растений, еще в водной среде, что и обеспечило возможность освоения суши. О древности арбускулярной микоризы свидетельствует, помимо прочего, ее широкое распространение во всех группах наземных растений.
   Помимо грибной микоризы пользуется спросом и симбиоз с азотфиксирующими бактериями. Отношения растений с азотфиксаторами тоже имеют древнюю историю, однако в большинстве случаев речь идет о внеклеточных бактериальных симбионтах. Только некоторые покрытосеменные (цветковые) растения сравнительно недавно научились культивировать бактерии внутри клеток своих корней, в особых органах – клубеньках. Клубеньковые симбиозы бывают двух типов: 1) симбиоз бобовых с ризобиями (бактериями из группы альфапротеобактерий); 2) актинориза – симбиоз с актинобактериями рода Frankia. Актинобактерии образуют многоклеточный мицелий наподобие грибов; раньше их относили к грибам и называли актиномицетами.
   Клубеньковые симбиозы встречаются только в четырех группах (порядках) покрытосеменных: у бобовых (Fabales), розовых (Rosales), тыквенных (Cucurbitales) и буковых (Fagales), причем не у всех, а только у части представителей. Недавно на основе молекулярно-генетических данных было установлено, что эти четыре порядка представляют собой монофилетическую кладу, т. е. группу, происходящую от общего предка и включающую всех его ныне здравствующих потомков. Вероятно, у общего предка этой группы произошли какие-то генетические изменения, обусловившие возможность развития клубенькового симбиоза. Одни представители группы впоследствии воспользовались этой возможностью, другие нет.
   Симбиоз бобовых с ризобиями изучен лучше, чем актинориза. Но у двух типов клубеньковых симбиозов обнаружилось много общего: по меньшей мере семь генов задействованы в обоих симбиозах. Эти гены получили название «общих генов симбиоза». По-видимому, при становлении клубенькового симбиоза была использована древняя генетическая программа, сложившаяся изначально для обслуживания внутриклеточного симбиоза с грибами. Для полноты картины хотелось бы уяснить, что же изменилось в генах при становлении тесных отношений с азотфиксаторами.
   В 2008 году британские и германские биологи (Markmann et al., 2008) взяли разные группы цветковых и проанализировали строение белков, кодируемых «общими генами симбиоза». Оказалось, что у всех цветковых большинство этих белков имеют почти одинаковую, «консервативную» структуру. И только один из них оказался вариабельным. Белок этот называется SYMRK (symbiosis receptor kinase). Он различается у клубеньковых растений, двудольных и однодольных.
   Строение SYMRK, а точнее строение его доменной части (домен – функциональная часть или блок белковой молекулы, содержащий узнаваемый аминокислотный «мотив»), говорит кое-что о специализации этого белка в клетке. У него есть, во-первых, трансмембранный домен, который, как видно из названия, располагается в толще клеточной мембраны (для белка клеточная мембрана и вправду толстая и вместительная). Во-вторых, внутриклеточная часть белка содержит домен протеинкиназы, функция которого состоит в переносе фосфата с АТФ на какой-нибудь белок. Этот процесс называется фосфорилированием. Таким способом многие рецепторные белки передают полученный извне сигнал внутрь клетки, поскольку фосфорилирование белков меняет их свойства – например, переводит их в активное состояние из неактивного. И трансмембранный домен, и домен протеинкиназы в белке SYMRK почти одинаковы у всех цветковых. Различия сосредоточены во внеклеточной части белка, которая выполняет рецепторную функцию, т. е. улавливает внешний химический сигнал. Исследователи выявили три варианта этой вариабельной внеклеточной части белка SYMRK:
   1) «длинный вариант», характерный для растений, образующих клубеньки, и их близких родственников;
   2) «средний вариант», характерный для дальних родственников клубеньковых растений;
   3) «короткий вариант», характерный для однодольных.
   Грибная арбускулярная микориза встречается у обладателей всех трех вариантов гена. Клубеньки любого типа (содержащие ризобии или актинобактерии) встречаются только у обладателей «длинного» варианта гена SYMRK. Очевидно, желающие приобрести клубеньки позаботились о своевременном распознавании дефицитных симбионтов. Длина нуклеотидной последовательности увеличивается за счет включения в ключевую область двух фрагментов (доменных мотивов) других генов. Оба эти фрагмента были не изобретены заново, а «заимствованы» у генов белков, имеющихся в геноме растений.
   Очевидно, приобретение «длинного» варианта SYMRK как раз и было тем ключевым событием, которое создало предпосылки для развития клубеньковых симбиозов – причем «генетическая программа» клубенькового симбиоза представляет собой модификацию «генетической программы» арбускулярной микоризы. Это проверили в серии экспериментов.
   В первом эксперименте у растения датиска (Datisca glomerata), корни которого в норме образуют арбускулярную микоризу и актиноризу, отключили ген SYMRK. В результате растение утратило способность к формированию обоих симбиозов – и с грибом, и с актинобактерией Frankia. Значит, ген SYMRK необходим и для грибного, и для бактериального симбиоза, у них единая генетическая основа.
   Второй эксперимент показал, что ген SYMRK не служит для распознавания конкретных бактерий-симбионтов. Бобовое растение лядвенец японский (Lotus japonicus) образует клубеньки с бактерией-ризобией Mesorhizobium loti, а люцерна (Medicago truncatula) – с бактерией Sinorhizobium melioti. Мутантной люцерне с испорченным геном SYMRK, не способной формировать никакой симбиоз вообще, пересадили ген SYMRK от лядвенца. Эта операция полностью восстановила способность люцерны образовывать симбиоз. При этом трансгенная люцерна стала образовывать клубеньки со «своей» исконной бактерией Sinorhizobium, а вовсе не с Mesorhizobium. Также мутантному лядвенцу пересаживали ген SYMRK от других бобовых и их бесклубеньковых родственников, например настурции, и во всех случаях его пошатнувшиеся отношения со своим Mesorhizobium восстанавливались. Таким образом, SYMRK отвечает не за узнавание и выбор симбионта, а только за общую способность формировать внутриклеточный симбиоз с бактериями. Узнавание осуществляется другими белками, какими именно – пока не установлено.
   В третьем эксперименте снова использовали мутантную форму лядвенца японского, не образующую ни арбускулярной микоризы, ни клубеньков. Растениям пересаживали «средний» вариант гена, взятый у помидора, и «короткий» вариант, позаимствованный у риса. В обоих случаях у мутантного лядвенца восстановилась способность к формированию арбускулярной микоризы, но не клубеньков. Следовательно, укороченные варианты гена SYMRK достаточны для грибной микоризы, но не для клубеньковых симбиозов.
   Белок SYMRK необходим для формирования особых внутриклеточных структур – симбионтоприемников или «преинфекционных нитей», которые впоследствии заселяются симбиотическими бактериями (и тогда их уже называют «инфекционными нитями»). Похожие структуры образуются в клетках корней и для принятия грибных симбионтов (в случае арбускулярной микоризы). Сходство в строении этих симбионтоприемников отражает единство генетической программы, отвечающей за формирование всех трех типов внутриклеточного симбиоза: арбускулярной микоризы, симбиоза с ризобиями и актиноризы.
   Полученные результаты подтверждают гипотезу, согласно которой способность к формированию клубеньковых симбиозов развилась на основе древней генетической программы арбускулярной микоризы. Ключевое эволюционное событие заключалось в том, что клетки корней приобрели способность реагировать формированием «симбионтоприемников» не только на присутствие симбиотических грибов, но и на близость азотфиксирующих бактерий. А если пристальней вглядеться в молекулярные подробности этого события, то увидим, что для этого понадобилось перенастроить рецепторную часть одного мембранного белка (SYMRK). Этот белок пристроил в свое пользование два дополнительных участка из других имеющихся под рукой генов. Можно сказать, что для налаживания симбиоза организмов использовался своеобразный молекулярный, генный симбиоз. Принципы конструирования нового схожи и на уровне молекул, и на уровне органов, организмов и популяций.
   Возникновение клубеньковых симбиозов – исключительное по своей полезности приобретение, имеющее к тому же важное биосферное значение. Казалось бы, для такого «революционного» нововведения потребуется масса приспособлений, реорганизация больших областей генома. Но нет, понадобилось всего лишь научиться узнавать во внешней среде новый объект, а для этого – чуть-чуть видоизменить белок-рецептор. Когда речь идет о внешне сложной проблеме, помогает внимательное разглядывание подробностей (как в примере с белоногими хомячками, чья светлая защитная окраска складывается всего лишь из расширения светлой полосы на шерстинках): ключевое изменение зачастую оказывается простым и легкодостижимым.
   Между микро– и макроэволюцией нет принципиальной разницы
   Из истории азотфиксирующих симбиозов можно извлечь важный урок. Мы увидели, что важное новшество, такое как появление клубеньковых симбиозов – событие без преувеличения глобальной, биосферной значимости! – реализовалось в ходе эволюции по той же схеме, что и приобретение малярийным плазмодием устойчивости к хлорохину. В обоих случаях ключом к приобретению нового признака стало изменение активного центра белка, отвечающего за избирательное связывание тех или иных веществ. Правда, плазмодий обошелся нуклеотидной заменой, а у растений произошла внутригеномная рекомбинация – перетасовка участков генов. Но это, по правде сказать, пустяк. Гены могли перетасоваться и у плазмодия (с примерами таких событий мы встретимся в следующих главах).
   Подобные параллели между самыми крупными и самыми ничтожными эволюционными событиями убеждают биологов в том, что между так называемыми микроэволюцией и макроэволюцией[35] нет принципиальной разницы. Это исключительно вопрос масштаба. Посмотрите на эволюцию в лупу – увидите микроизменения. Взгляните издалека – увидите более значительные макроперемены. Но в основе тех и других лежат сходные механизмы.
   На единую природу микро– и макроэволюции указывают и другие факты, в том числе фундаментальное сходство, если не сказать тождество, внутри– и межвидовой изменчивости. Если мы начнем сравнивать генетические различия между двумя особями одного вида с различиями, существующими между особями разных видов, то увидим в буквальном смысле одно и то же: замены нуклеотидов («однонуклеотидные полиморфизмы»), вставки и выпадения нуклеотидов («инделы»), транспозиции (перемещения фрагментов ДНК из одного места генома в другое), инверсии (повороты фрагментов ДНК на 180°), вариации по числу копий повторяющихся фрагментов и т. д. Крупные хромосомные перестройки, такие как слияние двух хромосом в одну или, наоборот, разделение, в пределах одного вида встречаются реже, чем при межвидовых сравнениях, но все же встречаются. Такие перестройки чреваты снижением плодовитости гибридного потомства (т. е. потомства от скрещивания родительских особей с разным числом хромосом), но не являются непреодолимым барьером для гибридизации, как показывают многочисленные примеры видов, в пределах которых число хромосом варьирует[36]. Например, среди диких кабанов, проживающих в Испании, встречаются особи с 36, 37 и 38 хромосомами (Nombela et al., 1990).
   Биологи не сразу пришли к пониманию тождества внутри– и межвидовой изменчивости. Довольно долго допускалось существование особых «макроизменений», которые приводят к появлению новых видов и которые принципиально отличаются от внутривидовой изменчивости. Стремительное развитие методов изучения ДНК в последние два десятилетия позволило проверить эти предположения. Проверки они не выдержали. На сегодняшний день о них можно смело забыть.
   Важно, что внутри– и межвидовые различия идентичны не только на качественном уровне, но и на уровне количественных соотношений. К примеру, если мы сопоставим генетические различия, имеющиеся между разными людьми, с теми различиями, которые отделяют нас от шимпанзе, то увидим, что эти две группы различий одинаковы по многим статистическим параметрам: по соотношению значимых и незначимых замен в белок-кодирующих генах, по соотношению однонуклеотидных замен и выпадений или вставок нуклеотидов в некодирующих областях и т. д. Между двумя людьми, конечно, различий меньше, чем между человеком и шимпанзе (примерно в 10–20 раз), но различия эти – одной и той же природы.
   Например, недавно международная команда генетиков опубликовала результаты сравнения геномов 29 видов плацентарных млекопитающих (Lindblad-Toh et al., 2011). Ученые выявили 3,6 млн функциональных участков ДНК, находящихся под действием очищающего отбора. Эти участки, мутации в которых не являются нейтральными, составляют примерно 5,5 % генома у плацентарных. Около трети из них соответствуют белок-кодирующим, остальные две трети – регуляторным последовательностям. Выявлено 280 тыс. регуляторных участков, происходящих из фрагментов мобильных генетических элементов; 563 участка, эволюция которых шла ускоренными темпами у предков человека после их отделения от предков шимпанзе. Но для нас сейчас важно другое. Когда авторы сопоставили полученные данные с имеющейся информацией по внутривидовой генетической вариабельности Homo sapiens, оказалось, что эти массивы данных прекрасно согласуются друг с другом. Те участки генома, которые мало отличаются у разных видов плацентарных (т. е. являются консервативными – медленно меняющимися в ходе эволюции), в пределах человеческой популяции тоже имеют низкую вариабельность. И наоборот: те участки, которые у разных людей могут сильно отличаться друг от друга, у других плацентарных тоже изменчивы. Более того, многие сайты (нуклеотидные позиции) с ограниченной эволюционной пластичностью (например, позиции, в которых может стоять нуклеотид Г или Т, но не А и не Ц), варьируют одинаковым образом как внутри человеческой популяции, так и у разных видов плацентарных. Это значит, что очищающий отбор, действовавший на геномы различных плацентарных, продолжал схожим образом действовать и на геномы ближайших предков современного человечества – а потому и изменчивость, накопление которой определяется характером очищающего отбора, оказывается сходной внутри вида и между видами.
   Итак, изменчивость, определяющая различия между особями одного вида, – это, по сути, та же самая изменчивость, что определяет различия между видами, родами, семействами и т. д. Дайте ей только время, чтобы накопиться.
   Эти факты говорят о единстве микро– и макроэволюции, т. е. внутри– и межвидовых эволюционных изменений. Пользуясь модным ныне словечком, можно сказать, что эволюция фрактальна: большое отражается в малом, малое – в большом. Поэтому изучение мельчайших, только в микроскоп заметных событий (а нам их изучать легче всего, учитывая скоротечность жизни) дает адекватное представление и о событиях гораздо большего масштаба.

Глава 3. Секс

   Кроме размножения (в основе которого лежит репликация ДНК), наследственности (основанной на специфическом спаривании нуклеотидов), мутаций (включая перетасовку фрагментов ДНК внутри генома) и естественного отбора (влияния мутаций на эффективность размножения) у земной жизни есть еще одна важная шестеренка, еще один незаменимый механизм создания нового, без которого эволюция едва ли смогла бы даже стартовать, не говоря уж о сотворении китов и зябликов.
   Биологи, особенно англоязычные, часто называют явление, о котором идет речь, простым и выразительным словом «секс». В русском языке «секс» имеет иной спектр смысловых оттенков, что чревато путаницей. Поэтому давайте уточним, что именно мы будем иметь в виду под сексом. Мы будем иметь в виду любые способы комбинирования в одном геноме фрагментов разных геномов. Это можно еще назвать «межорганизменной рекомбинацией», но «секс» короче и яснее. Под такое определение подходит и привычное нам половое размножение, характерное для сложных организмов, и горизонтальный перенос генов, характерный для бактерий, и даже обмен участками между двумя вирусными геномами, заразившими одну и ту же клетку.
   Как секс встраивается в классическую триаду эволюции: изменчивость – наследственность – отбор? Это, если подумать, нечто отличное и от первого, и от второго, и от третьего. Это отдельный фактор, который устанавливает новые отношения между наследственностью и изменчивостью. Он существенно увеличивает пользу от изменчивости, позволяя эволюции работать не с целыми геномами, а с отдельными генами и не с индивидуальными организмами, а с популяционными генофондами. Это резко повышает эффективность отбора. Именно секс превращает биологическое разнообразие на всех его уровнях в мощную адаптивную силу. Но вместе с тем применение этой силы заставляет организмы вырабатывать множество приспособлений, постоянно учитывать именно этот четвертый фактор. Вот уж где сексуальная революция формирует совершенно новые отношения и выдвигает жесткие и специфические требования к приверженцам этих новых отношений. В этой главе мы покажем, для чего нужен и как работает четвертый эволюционный фактор – секс.
   Несколько фактов о сексе, которые должен знать каждый
   Эукариоты и прокариоты занимаются сексом совершенно по-разному.
   Эукариоты практикуют «половое размножение», или, по-научному, амфимиксис. Что бы ни подумал читатель, но это значит, что у них в жизненном цикле присутствует два особых события. Первое – редукционное (т. е. «уменьшающее») деление, или мейоз, при котором из клетки с удвоенным набором хромосом (диплоидной) получаются клетки с одинарным набором (гаплоидные). Клетки, прошедшие редукционное деление, либо сразу становятся половыми клетками (гаметами), как у животных, либо предварительно сколько-то раз делятся обычным способом (митозом) и только после этого дают начало гаметам (так обстоит дело у растений). Второе событие – оплодотворение, или сингамия. При оплодотворении две гаметы, обычно происходящие от разных организмов, сливаются в одну клетку с двойным набором хромосом – зиготу. Зигота снова становится диплоидной, из нее вырастает диплоидный организм, который в какой-то момент путем мейоза начинает производить гаплоидные клетки.
   При половом размножении смешивание генов двух родительских организмов, во-первых, взаимное (двустороннее), во-вторых – полногеномное. Отец и мать передают каждой гамете целый гаплоидный геном в одном экземпляре, т. е. ровно по одной копии каждого своего гена. Зигота получает два гаплоидных генома, по одному от каждого из родителей. В ходе мейоза эти два генома перемешиваются, причем весьма тщательно, так что в итоге в каждую гамету попадает более или менее случайная смесь аллелей, полученных данным родительским организмом от своих отца и матери. Соответственно, зигота получит примерно в равных пропорциях аллели обоих своих дедушек и обеих бабушек.
   У прокариот (бактерий и архей) все по-другому. Участники полового процесса у них называются не родителями, а донором и реципиентом. Донор – тот, кто отдает часть своих генов и ничего не получает, реципиент – воспреемник чужих генов. Реципиент обретает новый генетический набор и сам становится как бы собственным потомком (а также потомком донора). Эта клетка с новыми генами дает начало своей линии потомков, размножающихся делением и время от времени передающих гены другим особям. Так что обмен генами у прокариот, во-первых, односторонний (от донора к реципиенту), во-вторых, не полногеномный, а фрагментарный, так как передается не целый геном, а лишь отдельные, обычно небольшие фрагменты ДНК.
   Существует три разновидности прокариотического секса.
   1. Конъюгация, при которой донор активен, а реципиент относительно пассивен. Донор прикрепляется к реципиенту при помощи специального отростка – пилуса (мн. ч. – «пили») и впрыскивает в реципиента немного своей ДНК. Часто этим процессом «руководят» маленькие эгоистичные[37] кольцевые хромосомы – конъюгационные плазмиды. Именно в плазмиде находятся все гены, необходимые для успешной конъюгации, включая гены белков пилуса. Первым делом плазмида перекачивает в реципиента не абы что, а копию самой себя. Часто на этом все и заканчивается. Такие плазмиды ведут себя как настоящие паразиты, используя одних бактерий для того, чтобы попасть в других. Скорее всего, они-то и «изобрели» конъюгацию как средство достижения своих корыстных целей. Однако плазмида может вступить в симбиоз с клеткой-хозяином – ведь, когда он делится, плазмида размножается вместе с ним, поэтому ей выгодно нести в себе гены, полезные для хозяина. Например, часто именно конъюгационные плазмиды распространяют в популяциях бактерий гены устойчивости к антибиотикам. Иногда плазмиды встраиваются в кольцевую хромосому хозяина. В этом случае вместе с плазмидной ДНК реципиент может получить и часть геномной ДНК донора.
   2. Вирусная трансдукция. Переходя из клетки в клетку, вирус может прихватить с собой кусочек ДНК прежнего хозяина и встроить его в геном следующего. При трансдукции и донор, и реципиент пассивны. Активен только вирус.
   3. Трансформация, при которой донор пассивен (по правде сказать, чаще всего он просто мертв), а реципиент активен. Трансформация – это захват микробами молекул ДНК из окружающей среды. Захваченные фрагменты могут принадлежать мертвым, разрушенным клеткам, но не обязательно: некоторые микробы выделяют ДНК во внешнюю среду еще при жизни. Проглоченная молекула ДНК может быть использована просто в качестве пищи, но может и встроиться в геном реципиента.
   Чужие гены встраиваются в геном реципиента двумя способами. Первый способ – «незаконная» рекомбинация. Например, новый фрагмент ДНК может вставиться в хромосому вдобавок к уже имеющимся там генам. Именно так микроб может получить полезный новый ген от неродственного микроба. Такие заимствования могут иметь важные эволюционные последствия, их активно изучают и именно их обычно имеют в виду, когда говорят о горизонтальном переносе генов. Второй способ (гораздо более распространенный, хотя и менее известный, потому что его трудно изучать) – гомологичная рекомбинация. Суть его в том, что фрагмент ДНК донора замещает собой похожий фрагмент ДНК в хромосоме реципиента. Говоря упрощенно, реципиент вырезает из своей хромосомы кусочек и заменяет его похожим кусочком чужой ДНК. Как правило, это происходит при обмене ДНК между близкими родственниками, чьи геномы мало отличаются друг от друга. Если участки ДНК различаются сильно, гомологичная рекомбинация между ними технически невозможна (в гомологичной рекомбинации задействован принцип комплементарности, но мы не будем вдаваться в молекулярные подробности)[38].
   Механизм гомологичной рекомбинации – очень древний. Он наверняка был у Луки – последнего общего предка всего живого. Он должен был появиться задолго до Луки, еще на заре РНК-мира. Используется он не только для перетасовки похожих фрагментов ДНК, но и для более очевидной и повседневной задачи, а именно для починки (репарации) повреждений ДНК, таких как разрывы двойной спирали. При этом фрагмент ДНК, гомологичный разрушенному, используется в качестве «заплатки» (да простят нас молекулярные биологи за такое вульгарное упрощение сложного процесса!).
   О горизонтальном переносе генов (ГПГ) мы говорили в книге «Рождение сложности». Эволюционная роль этого явления огромна: микробы и одноклеточные эукариоты приобрели множество нужных признаков, заимствуя чужие гены. Геном любой бактерии прямо-таки напичкан явно «неродными», но при этом крайне полезными генами. Один из примеров – появление у цианобактерий способности к кислородному фотосинтезу. Событие, перевернувшее мир, превратившее Землю из унылой бескислородой «планеты микробов» в царство разнообразных, удивительных и сложных «высших» форм жизни. Как оно произошло? Исключительно благодаря горизонтальному переносу. Кислородному фотосинтезу предшествовал фотосинтез бескислородный, более простой, требующий участия одного белкового комплекса – «фотосистемы». Предки цианобактерий умудрились скомбинировать в своем геноме сразу две слегка различающиеся фотосистемы. Одна, вероятно, была у них «своя», а вторую они позаимствовали у другого бескислородного фотосинтетика. Комбинация двух фотосистем в одной клетке позволила цианобактериям перейти к кислородному фотосинтезу – процессу более сложному, но зато и более перспективному. Для бескислородного фотосинтеза требуются дефицитные вещества – доноры электрона, например сероводород или двухвалентное железо. При кислородном фотосинтезе донором электрона служит обычная вода – колоссальное облегчение!
   Все это хорошо, но есть одна проблема. То, что мы видим в геномах прокариот, – все эти заимствованные у других микробов полезные гены – не результат ГПГ в чистом виде, а результат комбинации ГПГ и отбора. Мы видим только удачные переносы, потому что неудачные отсеяны отбором. Сколько их было? Точную цифру назвать трудно, но наверняка гораздо больше, чем удачных. Хватать без разбора чужие фрагменты ДНК и встраивать их в свой геном – занятие крайне рискованное. Шанс приобрести что-то полезное при этом ничтожно мал по сравнению с шансами повредить свой геном, испортить важный ген ненужной вставкой или заменой, приобрести что-то несовместимое с имеющимися у вас генами, заполучить смертоносный вирус или активный мобильный элемент, который начнет размножаться и прыгать как сумасшедший и превратит ваш геном в бессмысленную лапшу.
   Полезный новый ген у неродственного микроба удается заполучить в среднем лишь раз-другой за миллион лет (примерно такие цифры дал анализ геномов бактерий и одноклеточных эукариот). При этом бесполезные и вредные новые гены доступны в неограниченном количестве. Их можно получать десятками ежедневно.
   Естественный отбор не обладает даром предвидения. Он не будет «терпеть» вредный признак (склонность заимствовать чужие гены) миллион лет ради того, чтобы после всех перенесенных мучений приобрести наконец что-то полезное.
   Из этого следует, что микробы сохраняют способность к заимствованию генов не потому, что надеются «одолжить» у неродственных микробов какое-нибудь замечательное новшество, новый полезный ген или генный комплекс. Отбор не смог бы поддерживать способность к ГПГ ради такого «журавля в небе». Остается одно из двух. Либо эта способность вообще не поддерживается отбором и является неким «неизбежным злом», либо микробы обмениваются генами по какой-то другой причине: более повседневной и насущной, связанной с какими-то сиюминутными выгодами. Первый вариант маловероятный, отбор умеет сводить «зло» к минимуму, а в природе почти все организмы практикуют генетический обмен. Значит, более осмысленным будет обсуждение второго варианта – выгоды здесь и сейчас. Что это за выгоды? Это мы сейчас и попытаемся выяснить.

Секс против вредных мутаций

   Допустим, существует популяция микробов, не умеющих меняться генами (такие организмы называют бесполыми). Допустим, у каждого новорожденного микроба происходит одна вредная мутация. В этом случае популяция обречена на вырождение. С каждым поколением груз вредных мутаций будет расти, а приспособленность – падать. Никакой отбор не сможет остановить накопление мутационного груза, потому что все особи поколения N будут иметь по N вредных мутаций: отбирать некого. Единственное, что сможет сделать отбор, – это замедлить снижение приспособленности, отбраковывая более вредные мутации и сохраняя менее вредные.
   Эту идею (в приложении не к микробам с их ГПГ, а к эукариотам с половым размножением – амфимиксисом) разработал великий эволюционный генетик Герман Мёллер (1890–1967). Она вошла в науку под названием «храповик Мёллера». Храповик – это устройство, в котором ось может крутиться только в одну сторону. Имеется в виду, что средняя приспособленность бесполой популяции под действием вредных мутаций может меняться только в сторону ухудшения. Например, если случайно погибнет или мутирует «лучшая» особь в популяции, то эта потеря необратима. Храповик повернулся на один щелчок. Ведь без секса невозможно собрать из пары «плохих» геномов геном получше.
   Но если микробы умеют заимствовать чужие гены, то в каждом поколении найдутся счастливчики, которые заменят свой испорченный ген на его неиспорченную версию, взятую у другого микроба, у которого вредная мутация произошла в другом гене. Поэтому в каждом поколении, несмотря на мутагенез, какая-то часть особей окажется свободной от вредных мутаций. Их-то и поддержит отбор, они-то и оставят больше всего потомков. При достаточно мощном отборе популяция сумеет избежать вырождения.
   Идею можно выразить иначе. Если у бесполого организма возникает вредная мутация, его потомки уже не смогут от нее избавиться. Она будет, как родовое проклятие, передаваться всем его потомкам вечно (если только не произойдет обратная мутация, что крайне маловероятно). У бесполых организмов отбор может отбраковывать только целые геномы, но не отдельные гены. Сойдут с арены те несчастные, которым совсем не повезло, а останутся те, кого мутационная судьба в этот раз пощадила (при этом вместе с вредной мутацией может исчезнуть и редкий полезный признак). Но и они окажутся хуже, чем их родители, просто их мутации не такие зловредные. Поэтому в череде поколений бесполых организмов вредные мутации могут неуклонно накапливаться. Храповик Мёллера – это настоящая трагедия отцов и детей: отцы могут справедливо сетовать на падение нравов.
   Но если организмы размножаются половым путем (или хотя бы изредка практикуют ГПГ с гомологичной рекомбинацией), то индивидуальные геномы иногда перемешиваются. Новые геномы при этом собираются из фрагментов, ранее принадлежавших разным организмам. В результате возникает новая сущность, которой нет у бесполых организмов – генофонд популяции. Гены получают возможность размножаться и выбраковываться поодиночке, независимо друг от друга, а не в неразрывной связке с другими генами данного генома. Отбор получает возможность отделять зерна от плевел: ген с неудачной мутацией может быть отсеян отбором, а остальные гены данного родительского организма могут при этом сохраниться в генофонде.
   Таким образом, секс помогает отбору очищать генофонд от постоянно возникающих вредных мутаций, тем самым спасая популяцию от вырождения.

Секс в защиту полезных мутаций

   Поскольку обе мутации полезны, потомки мутантов будут размножаться быстрее прочих особей (мы не рассматриваем усложненный вариант, когда оба полезных признака отягощены букетом других мутаций разной степени вредности). Каждый мутант даст начало быстро размножающемуся клону. В конце концов все немутанты будут вытеснены и в популяции останутся два успешных клона: один с мутацией в гене А, другой с мутацией в гене Б. Пока все идет не так уж плохо (с точки зрения «пользы» для популяции).
   Дальше начинаются неприятности. Поскольку микробы бесполые, объединить обе мутации в одном геноме они не в силах. Вместо этого начнется конкуренция между двумя клонами, или, по-научному, клональная интерференция. Тот клон, чья мутация оказалась более полезной, в итоге победит, а второй клон (тот, чья мутация оказалась менее полезной) будет вытеснен, т. е. попросту исчезнет. Таким образом, из двух полезных мутаций зафиксируется только одна. Вторая будет утрачена, хотя ее очень жаль терять!
   Неэффективность налицо. Бесполая популяция – весьма несовершенная «машина для эволюции». А все потому, что она даже и не популяция в полном смысле слова. Это свора изолированных клонов, жестоко конкурирующих друг с другом.
   Но если мы предоставим нашим микробам возможность заимствовать чужие гены, то какой-то мутант с улучшенным геном А рано или поздно позаимствует у микроба из другого клона улучшенный ген Б (или наоборот). В результате появится микроб с обеими полезными мутациями вместе. Его-то потомки и унаследуют мир. Польза ГПГ очевидна, не правда ли? Поэтому если смотреть на проблему отцов и детей глазами эволюциониста, то она легко решается с помощью секса.
   Секс делает все полезные мутации, возникшие в популяции, «общим достоянием». Поэтому скорость приспособления к меняющимся условиям у организмов, способных к сексу, должна быть выше, чем у бесполых. Эту идею первыми разработали в 1930-х годах уже упоминавшийся Герман Мёллер и другой гениальный генетик-эволюционист Рональд Фишер (1890–1962). Она так и называется – эффект Фишера – Мёллера.
   Эффект Фишера – Мёллера тем сильнее, чем выше частота возникновения полезных мутаций. Эта частота, в свою очередь, зависит от условий среды. Чем хуже условия, тем чаще возникают полезные мутации, чем условия благоприятнее, тем это происходит реже. В этом нет никакой мистики, так получается автоматически. Ведь приспособленность организма и благоприятность условий – стороны одной медали. Ухудшение условий идентично снижению приспособленности. Чем ниже приспособленность (т. е. чем дальше находится организм от локального пика на ландшафте приспособленности), тем выше вероятность того, что случайная мутация окажется полезной. Из этого следует, что эффект Фишера – Мёллера должен быть сильнее в переменчивой среде, к которой организмы не успевают как следует приспособиться.

   Схема, показывающая, как секс может ускорять распространение полезных мутаций. При половом размножении (верхний рисунок) два новых полезных аллеля (A и B) объединяются в результате скрещивания особей, каждая из которых имеет только один из этих аллелей. При бесполом размножении (нижний рисунок) приходится дожидаться, пока обе мутации случайно возникнут у одного и того же клона.

   Рассмотренные модели применимы к любым популяциям, кроме чрезвычайно больших или абстрактных «бесконечно больших» популяций, с которыми любят играть специалисты по эволюционной генетике. Дело в том, что для бесконечно больших популяций удобно выводить красивые формулы. В популяциях с ограниченной численностью секс, по-разному комбинируя полезные и вредные мутации, регулярно создает генотипы с повышенной приспособленностью, появление которых в бесполой популяции маловероятно. Что касается бесконечно больших популяций, то там все не так очевидно: требуется соблюдение ряда дополнительных условий, чтобы секс давал ощутимое преимущество. Специалисты спорят, насколько часто соблюдаются эти условия в природе. Можно поспорить и о том, часто ли в природе встречаются настолько громадные популяции, что их можно считать бесконечными без ущерба для точности моделей. Общий вывод, впрочем, от этого не меняется. Как правило, секс полезен, особенно если за него не приходится слишком дорого платить.
   Секс помогает извлечь пользу из численности
   Из модели Фишера – Мёллера вытекает интересное следствие: польза от секса в большой популяции может быть больше, чем в маленькой. Выше мы рассмотрели случай, когда в двух популяциях – половой и бесполой – возникло по две полезные мутации. В бесполой популяции зафиксировалась только одна из них, а вторая пала жертвой безжалостной конкуренции между клонами. В популяции организмов, способных к сексу, зафиксировались обе мутации.
   Задумаемся теперь, что произойдет, если мы вдвое увеличим численность обеих популяций.
   Логично допустить, что в популяции с удвоенной численностью будет возникать вдвое больше редких полезных мутаций в единицу времени. Поэтому давайте предположим, что в каждой популяции возникло уже не по две, а по четыре полезных мутации (в четырех разных генах у четырех разных особей). Какая судьба их ждет? Ответ очевиден. В половой популяции все четыре мутации объединятся в одном геноме (мы предполагаем, что эффект мутаций аддитивен, т. е. их польза складывается и они не мешают друг другу). Положительное влияние численности налицо: вдвое больше численность – вдвое больше полезных мутаций зафиксировалось.
   Итак, сексуальная популяция с единым генофондом будет адаптироваться тем эффективнее, чем выше ее численность. Бесполая «свора конкурирующих клонов» не получает такого выигрыша от увеличения численности.
   В 2002 году этот теоретически предсказанный эффект удалось подтвердить экспериментально. Ник Коулгрейв из Эдинбургского университета работал с жгутиконосцами – хламидомонадами (Chlamydomonas reinhardtii). Эти одноклеточные водоросли могут размножаться как бесполым путем (делением), так и половым, образуя гаметы, которые затем сливаются в зиготы. Половое размножение у хламидомонад можно стимулировать искусственно (поместив жгутиконосцев в воду, не содержащую соединений азота), а можно, наоборот, заблокировать – например, поместив в аквариум жгутиконосцев только одного «пола» (вообще-то у них нет самцов и самок, зато есть так называемые типы спаривания, причем скрещивание возможно лишь между представителями разных «типов», которые ничем, кроме половой избирательности, друг от друга не отличаются). Коулгрейв заставил множество больших, средних и маленьких популяций хламидомонад приспосабливаться к неблагоприятным для них условиям. При этом половина популяций размножалась как бесполым, так и половым путем, а другая половина – только бесполым.
   Спустя 50 поколений у всех подопытных популяций была измерена приспособленность (скорость размножения по сравнению с исходными, предковыми жгутиконосцами). Оказалось, что все бесполые популяции приспособились к новой среде почти одинаково плохо – большие лишь ненамного лучше маленьких. Популяции, практиковавшие секс, приспособились лучше, чем бесполые. Самое главное, чем выше была численность, тем сильнее проявилось их преимущество. Маленькие популяции (состоявшие примерно из 1000 особей) приспособились к новой среде лишь на 2 % лучше, чем бесполые, средние (100 тыс. особей) – на 7 %, большие (1 млн особей) – на 13 % (Colegrave, 2002).
   Таким образом, проверяемое следствие, вытекающее из модели Фишера – Мёллера, замечательно подтвердилось. Разумеется, то, что справедливо для хламидомонад, не обязательно должно быть верным для всех живых существ. Но никто и не говорит, что в жизни все просто и однозначно.

Переменчивая среда способствует половому размножению

   Еще одно подтверждение эффекта Фишера – Мёллера удалось получить в опытах на коловратках (Becks, Agrawal, 2010). Коловратки класса Monogononta (однояичниковые) способны как к бесполому (партеногенетическому), так и к половому размножению[40]. При низкой плотности популяции в ней, как правило, присутствуют только самки, производящие так называемые амиктические (партеногенетические) диплоидные яйца, из которых без оплодотворения выводится следующее поколение самок. При высокой плотности часть самок начинает производить гаплоидные яйца, из которых выходят маленькие непитающиеся самцы. Они спариваются с самками, в результате чего образуются «покоящиеся» оплодотворенные яйца с плотной оболочкой. Из них снова выводятся только самки. Решение о переходе к половому размножению коловратки принимают на основе так называемого чувства кворума. Это происходит, когда концентрация веществ, выделяемых самками, превышает определенный порог. Поэтому, чтобы спровоцировать самку на половое размножение, достаточно поместить ее в воду, взятую из аквариума, где плотность популяции коловраток высока.

   Коловратка Brachionus calyciflorus поедает колонию нитчатых цианобактерий Anabaena. Коловратка несет на себе два крупных партеногенетических яйца.

   У коловраток Brachionus варьирует склонность к тому или другому способу размножения, и эти вариации наследственные. Это значит, что выбранный коловраткой способ размножения зависит не только от среды, но и от генов: встречаются клоны самок, легко и быстро переходящие к половому размножению, тогда как другие клоны делают это менее охотно.
   Эти особенности делают коловраток удобным объектом для экспериментального изучения эволюции пола. Выше мы говорили, что эффект Фишера – Мёллера лучше проявляется в переменчивой среде: в этих условиях половое размножение становится более выгодным (Pylkov et al., 1998; Lenormand, Otto, 2000; Agrawal, 2009). Суть идеи в следующем. Допустим, популяция состоит из двух частей (субпопуляций), живущих в разных условиях, причем между частями существует обмен особями (миграция). В каждой из двух субпопуляций отбор благоприятствует разным комбинациям генов (точнее, генетических вариантов – аллелей). Если особь мигрирует из одной субпопуляции в другую, некоторые ее гены окажутся в новых условиях вредными, снижающими приспособленность. Поэтому всем остальным генам данной особи будет выгодно избавиться от этого груза и найти себе более подходящую «компанию», т. е. объединиться с генами аборигенов, лучше приспособленными к местным условиям. Этого легко добиться при помощи полового размножения, но совершенно невозможно, если вы размножаетесь партеногенезом. Поэтому, если миграции происходят достаточно регулярно, любая мутация, повышающая склонность особей к половому размножению, имеет шанс распространиться в популяции и вытеснить конкурирующий аллель, снижающий частоту полового размножения.
   Биологам из Канады и Германии удалось получить экспериментальное подтверждение этой идеи в ходе экспериментов с коловратками Brachionus calyciflorus. Подопытные коловратки были выведены из яиц, собранных в одной природной популяции. Ранее было показано, что в этой популяции есть наследственная изменчивость по склонности к сексу, а раз есть наследственная изменчивость, то возможна и эволюция под действием отбора.

   Жизненный цикл коловраток класса Monogononta. Из Becks, Agrawal, 2010.

   Ученые вывели из собранных яиц 120 лабораторных популяций, изначально одинаковых по своим свойствам и уровню изменчивости. Часть популяций затем выращивали в однородных, часть – в разнородных условиях в течение 14 недель, что соответствует примерно сотне поколений. Численность каждой популяции поддерживалась на уровне около 10 тыс. особей.
   Разнородные условия были смоделированы следующим образом. Популяцию делили на две части (субпопуляции). Одну часть помещали в богатую питательную среду, а другую – в бедную. Богатство среды определялось количеством одноклеточных водорослей, которыми питаются коловратки, а количество водорослей – концентрацией азота в воде. Время от времени в каждом аквариуме часть воды заменяли на свежую питательную среду, чтобы количество пищи оставалось примерно постоянным. Миграции между субпопуляциями осуществлялись путем еженедельного пересаживания части коловраток и их яиц из одного аквариума в другой. Использовали два разных уровня миграции: 1 % и 10 % особей за поколение.
   В «однородных» экспериментах все делалось точно так же, за исключением того что среда в обоих аквариумах была одинаковая: либо богатая, либо бедная.
   Исследователи следили за изменениями частоты полового размножения и «наследственной склонности» к нему в каждой популяции. Реальную частоту определяли по соотношению амиктических (неоплодотворенных) и покоящихся (оплодотворенных) яиц. Изменения «наследственной склонности» (частот аллелей, регулирующих склонность к половому размножению) определяли при помощи индивидуального тестирования клонов коловраток. Из каждой популяции брали по 84 самки и выводили из них небольшие партеногенетические клоны. Затем в воду, где жили эти клоны, добавляли немного воды из аквариума с высокой плотностью самок (как уже говорилось, это стандартный способ сексуальной стимуляции коловраток) и подсчитывали число клонов, перешедших к половому размножению.
   В начале эксперимента подопытные популяции продемонстрировали высокую готовность к сексу: более 80 % клонов переходили к половому размножению при стимуляции. Через шесть недель в популяциях, живших в однообразной среде, этот показатель упал до 60 %, еще через шесть недель – до 40 %. Таким образом, в однородной среде коловратки эволюционировали в сторону отказа от секса. Этот процесс шел с одинаковой скоростью как в бедной, так и в богатой среде.
   В популяциях, живших в разнообразной среде, через 6 и 12 недель после начала эксперимента наблюдался более высокий уровень полового размножения. Он тоже снизился по сравнению с исходным, но совсем ненамного. По истечении 12 недель 70 % клонов в этих популяциях по-прежнему были готовы перейти к половому размножению в ответ на соответствующий стимул. Уровень миграции (1 % или 10 % мигрантов на поколение) не повлиял на результаты эксперимента.
   Почему частота полового размножения все-таки снизилась даже в этих популяциях? Возможно, это объясняется тем, что природная популяция коловраток, из которой были выведены лабораторные, живет в еще более разнородных условиях, чем те, что были созданы в эксперименте.
   По прошествии 14 недель авторы объединили все экспериментальные популяции, хорошенько перемешали и снова разделили на 120 изолированных линий. Склонность к сексу в этих линиях изначально была около 45–50 %. Их опять поместили в однородные или разнородные условия. В первом случае частота полового размножения продолжала снижаться, во втором – начала расти. Таким образом, содержание в разнородных условиях может не только замедлять снижение частоты полового размножения, но и приводить к ее росту.
   По-видимому, для таких разнородных условий, которые были созданы в эксперименте, устойчивая или равновесная частота полового размножения находится где-то между 55 и 70 %. Если частота оказывается ниже равновесного уровня, «гены полового размножения» получают селективное преимущество над «генами асексуальности», и наоборот. В однородных условиях равновесный уровень составляет не более 25–30 % (до этой отметки упала склонность к сексу у подопытных популяций к концу 20-й недели), а может быть и вовсе равен нулю. Исследователи допускают, что если бы они продолжили эксперимент, то, наверное, смогли бы вывести коловраток, полностью утративших интерес к сексу, подобно тому как это произошло с бделлоидными коловратками.
   Полученные результаты согласуются с идеей о том, что половое размножение помогает разбивать комбинации генов, подходящие для одних условий, но невыгодные в других. Это подтверждается, в частности, тем, что коловратки, жившие в течение 15 недель в однородной (бедной или богатой) среде, действительно адаптировались к этим условиям. Адаптированность оценивали по среднему числу потомков, производимых одной самкой в течение жизни. Коловратки, приспособившиеся к богатой среде, производят в ней в среднем около девяти потомков за жизнь, но, если их пересадить в бедную среду, их репродуктивный успех падает до пяти потомков. Самки, адаптировавшиеся к бедной среде, производят около шести потомков, а если их пересадить в богатую среду, их плодовитость падает до 5,5. Следовательно, разные условия действительно способствовали отбору разных аллелей.
   По-видимому, разнообразие условий среды является важным фактором, не позволяющим большинству организмов отказаться от секса.
   Дрожжи занимаются сексом не от хорошей жизни
   Хотя вопрос о том, почему большинство живых существ предпочитают сложный процесс полового размножения простому бесполому, продолжает оставаться любимой головоломкой эволюционистов-теоретиков, в общем виде эта задача была решена, по-видимому, еще Августом Вейсманом в конце XIX века (Weismann, 1889). Вейсман предположил, что секс увеличивает разнообразие потомства, тем самым предоставляя материал для отбора и повышая его эффективность, что позволяет организмам быстрее адаптироваться.
   Сегодня, по прошествии века с четвертью, можно сказать, что гипотеза Вейсмана при всей ее расплывчатости и неконкретности в целом подтвердилась. Правда, попытки ее конкретизировать породили новые проблемы. Появилось несколько конкурирующих теорий, которые по-разному оценивают влияние полового размножения на эффективность разных форм отбора. Одни модели, как мы уже знаем, видят в сексе прежде всего способ ускоренного накопления полезных мутаций (повышение эффективности положительного отбора). Другие подчеркивают роль секса в отбраковке вредных мутаций (отрицательный отбор). Поставить эксперимент, который позволил бы разделить эти два эффекта, трудно, потому что мы не умеем напрямую регулировать соотношение полезных и вредных мутаций у подопытных организмов. Можно, однако, регулировать его косвенно, меняя степень благоприятности среды. «Благоприятность» означает, что организмы хорошо приспособлены именно к такой среде, многие их гены подогнаны к ней оптимальным образом. Поэтому в идеальных условиях вероятность появления полезных мутаций минимальна. В неблагоприятной среде частота полезных мутаций должна быть выше: случайные перемены с большей вероятностью пойдут на пользу организму, если ему живется плохо. Что касается вредных мутаций, то они в обоих случаях должны возникать намного чаще, чем полезные. Однако их средняя «вредность», скорее всего, будет меньше, если условия благоприятны. Дело в том, что живые организмы, как правило, имеют «запас прочности». Например, у дрожжей из бооо генов только 1000 абсолютно необходимы для выживания в идеальных условиях. Все остальные нужны для борьбы с разного рода трудностями, т. е. для жизни в неоптимальной среде (Hillenmeyer et al., 2008). Ясно, что мутации, нарушающие работу этих «дополнительных» генов, будут в среднем более вредными в стрессовых условиях, чем в оптимальных.
   Все эти соображения были учтены Джереми Греем и Мэттью Годдардом из Оклендского университета (Новая Зеландия) при планировании эволюционного эксперимента, в ходе которого они попытались сравнить влияние секса на эффективность положительного и отрицательного (стабилизирующего) отбора (Gray, Goddard, 2012).
   В эксперименте использовались линии дрожжей, различающиеся по скорости мутирования и по способности к сексу. Наряду с обычными, «дикими» дрожжами, у которых средняя частота мутирования составляет 6,9×10−8 мутаций на пару нуклеотидов за поколение (в геноме дрожжей 1,2×107 пар нуклеотидов), использовались дрожжи с удаленным геном MSH2. Этот ген участвует в исправлении ошибок в ДНК, поэтому его удаление привело к десятикратному ускорению мутагенеза – до 7,3×10−7 мутаций на пару нуклеотидов за поколение.
   Жизненный цикл дрожжей Saccharomyces cerevisae.

   Кроме того, чтобы лишить часть подопытных линий способности к сексу, авторы удалили у них два гена (SPO11 и SPO13), необходимых для мейоза. В результате получились «бесполые» дрожжи, не отличающиеся от обычных ни по скорости размножения, ни по другим существенным характеристикам. Дрожжи размножаются бесполым путем (почкованием), пока им хватает пищи. Голодание стимулирует мейоз, в результате которого диплоидная клетка превращается в четыре гаплоидные споры. Гаплоидные клетки подразделяются на два пола (a и α). Разнополые клетки сливаются попарно, образуя зиготу, после чего цикл повторяется. Генно-модифицированные бесполые дрожжи при голодании тоже пытаются превратиться в споры, но вместо четырех гаплоидных спор у них получаются две диплоидные, вполне жизнеспособные и не нуждающиеся в слиянии с кем бы то ни было.
   Всего, таким образом, авторы получили дрожжевые клетки четырех типов:
   1) способные к сексу, с низкой скоростью мутирования;
   2) способные к сексу, с высокой скоростью мутирования;
   3) бесполые, с низкой скоростью мутирования;
   4) бесполые, с высокой скоростью мутирования.
   Половину подопытных популяций выращивали в благоприятных условиях (при температуре 30 °C в несоленой среде), остальные поместили в стрессовые условия (37 °C, 1,17 % NaCl). В общей сложности в эксперименте приняли участие 24 подопытные популяции: по три популяции каждого из четырех типов эволюционировали в благоприятных и столько же – в стрессовых условиях. Эксперимент продолжался в течение 300 бесполых поколений, между которыми были равномерно распределены 11 раундов полового размножения. Все популяции одновременно подвергались голоданию, что стимулировало образование гаплоидных спор у обычных дрожжей и диплоидных – у бесполых.
   Авторы следили за тем, как меняется приспособленность дрожжей по сравнению с предковым штаммом. Для этого подопытные дрожжи смешивали с предками в пропорции 1:1 и измеряли относительную скорость размножения эволюционировавшей популяции.
   В благоприятных условиях ни способность к половому размножению, ни скорость мутагенеза не повлияли на ход эволюции. Приспособленность дрожжей всех четырех типов лишь слабо колебалась и спустя 300 поколений осталась на исходном уровне.
   Это значит, что полезные мутации, по-видимому, почти не возникали (как и следовало ожидать в благоприятных условиях), и положительному отбору нечего было поддерживать. Результат соответствует общепринятому мнению, что в оптимальных условиях отрицательный отбор преобладает над положительным. Скорость мутирования, даже искусственно повышенная, вероятно, оказалась все же недостаточной, чтобы вызвать генетическое вырождение за 300 поколений.
   В неблагоприятных условиях картина получилась другая. Наблюдался рост приспособленности у дрожжей, способных к сексу, – как у обычных, так и у «мутаторов». У бесполых дрожжей с низкой скоростью мутирования рост приспособленности был выражен намного слабее. Что же касается бесполых линий с повышенной скоростью мутирования, то их приспособленность снижалась: началось генетическое вырождение.
   Рост приспособленности свидетельствует о накоплении полезных мутаций. Очевидно, в неблагоприятных условиях случайные мутации действительно оказываются полезными чаще, чем в оптимальных. Эксперимент подтвердил, что половое размножение повышает эффективность положительного отбора, помогая накапливать полезные мутации. Это видно из того, что обычные дрожжи приспособились к стрессовым условиям лучше, чем бесполые.
   То, что в неблагоприятных условиях у бесполых дрожжей-мутаторов началось вырождение, говорит о том, что в такой ситуации отрицательный отбор уже не мог справиться с отбраковкой вредных мутаций, и они начали накапливаться. Тем временем точно такие же дрожжи, но только способные к сексу, в таких же условиях быстро повышали свою приспособленность. Из этого следует, что в неблагоприятных условиях важную роль играют обе формы отбора, причем половое размножение повышает эффективность обеих.

Микробам – горизонтальный перенос, высшим организмам – половое размножение

   Рассмотренные примеры говорят о пользе скрещивания и перемешивания генов при половом размножении. Но у бактерий и архей вместо настоящего амфимиксиса работает горизонтальный перенос. Будет ли секс и в этом случае выполнять ту же функцию – быстро приспосабливать организмы к изменившимся условиям? Если это так, то ГПГ у микробов должен быть очень широко распространен и практиковаться не только между популяциями, но главным образом между особями одной популяции. Полезный аллель, который легко позаимствовать, скорее всего, окажется у близкого собрата.
   Традиционно преобладала точка зрения, что отбор у бактерий все-таки в основном клональный, действующий на уровне целых геномов. Это значит, что ГПГ не играет существенной роли в повседневных «попытках» прокариот приспособиться к изменчивой среде. Эта гипотеза теперь, при нынешнем развитии биотехнологий, легко проверяема. Такой труд взяли на себя биологи из Массачусетского технологического института: они показали, что традиционная точка зрения неверна или верна только отчасти и что в своей повседневной переменчивой жизни микробы то и дело заимствуют гены у своих ближайших родичей – других микробов той же популяции (Shapiro et al., 2012).
   Биологи работали с двумя популяциями морских планктонных бактерий Vibrio cyclitrophicus. Эти популяции, обозначаемые буквами L и S, находятся в процессе адаптации к разным экологическим нишам: часть бактерий приурочена к крупным (L), а другая – к мелким (S) частицам, отфильтрованным из морской воды. Результаты генетического анализа говорят о том, что разошлись они недавно (Hunt et al., 2008). По-видимому, популяции L и S приспосабливаются к жизни на разных представителях зоо– или фитопланктона[41].
   Авторы решили выяснить, какой из двух процессов преобладает на начальных этапах экологической дифференциации – отбор отдельных генов с удачными мутациями, которые распространяются за счет ГПГ, или клональный отбор, работающий с целыми геномами.
   Различить эти две ситуации можно, сравнив внутри– и межпопуляционный генетический полиморфизм (вариабельность) изучаемых популяций. Если преобладает отбор на уровне генов, две популяции должны четко отличаться друг от друга по небольшому числу генов – тех, от которых зависят экологические свойства популяций. При этом различающиеся участки генома должны иметь пониженный уровень внутрипопуляционного полиморфизма хотя бы в одной из двух популяций. Ведь на каждый такой участок действовал отбор, который поддерживал какой-то один вариант этого участка, вытесняя из генофонда другие его варианты (см. раздел «Следы естественного отбора» в главе 2). Напротив, те участки генома, которые у двух популяций сходны, должны быть более полиморфными в пределах каждой популяции, причем наборы вариантов (аллелей) могут быть одинаковыми в двух популяциях. Ведь отбор, связанный с приспособлением к новой нише, на них не действовал и они могли сохранить исходный полиморфизм, накопленный предками.
   Если же в процессе расхождения популяций преобладал клональный отбор, то и уровень полиморфизма, и генетические различия между популяциями должны быть распределены по геному более равномерно.
   Авторы отсеквенировали геномы 13 бактерий из популяции L и семи особей из популяции S. Сравнение геномов подтвердило первую версию: в недавней эволюции двух бактериальных популяций явно преобладал отбор на уровне отдельных генов. Следовательно, имел место интенсивный ГПГ между родственными микробами. Вот некоторые факты, на которых основан этот вывод.
   Обнаружено 725 нуклеотидных позиций, в которых у микробов L всегда стоит какой-то один нуклеотид, а у микробов S – другой. Эти 725 позиций назвали «экоснипами» (ecoSNPs[42]), поскольку именно они, скорее всего, отвечают за приспособление к различающимся условиям. Экоснипы не рассеяны по геному хаотически, а сгруппированы в 11 кластеров. Внутри каждого кластера хотя бы у одной из двух популяций наблюдается пониженный уровень полиморфизма, что свидетельствует о недавнем действии положительного отбора.
   Все прочие SNP (полиморфные нуклеотидные позиции), в числе 28 744 штук, равномерно рассеяны по геному и варьируют сходным образом и у L-экотипа, и у S-экотипа. Например, в какой-то позиции нуклеотид Ц может стоять у шести, а нуклеотид Г – у семи бактерий L, тогда как в популяции S нуклеотид Ц обнаружен у трех бактерий, а Г – у четырех.
   Это соответствует предположению о том, что отбор в сочетании с ГПГ распространял отдельные участки ДНК с удачными мутациями, а не целые геномы. При этом в остальных участках генома сохранялся исходный полиморфизм, имевшийся у предковой популяции.
   Другой важный вывод состоит в том, что генетический обмен между популяциями в последнее время происходит редко по сравнению с обменом внутри популяций. В прошлом, когда популяции еще не окончательно разошлись по экологическим нишам, межпопуляционный обмен происходил чаще.

   Модель экологической дифференциации двух популяций морской бактерии Vibrio cyclitrophicus. Тонкие белые и черные стрелки символизируют внутри– и межпопуляционный ГПГ. Толстые стрелки показывают появление (в результате мутации или ГПГ) адаптивных аллелей, облегчающих жизнь в двух разных местообитаниях. Из Shapiro et al., 2012.

   Стало быть, пора пересмотреть некоторые устоявшиеся представления. Во-первых, выясняется, что на генетическом уровне эволюционные процессы у прокариот с их ГПГ и эукариот, размножающихся половым путем, различаются не так уж сильно. В обоих случаях отбор идет в основном на уровне отдельных фрагментов ДНК, а не целых геномов.
   Во-вторых, стало ясно, что генетический обмен между родственными микробами (представителями одной и той же популяции) идет очень активно, фактически выполняя ту же функцию, что и половой процесс у высших организмов. При этом важнейшую роль играет гомологичная рекомбинация, благодаря которой заимствованные гены не добавляются к уже имеющимся, а заменяют собой свои «старые версии».
   В-третьих, высокая частота внутрипопуляционного ГПГ по сравнению с межпопуляционным говорит о том, что у бактерий, приспосабливающихся к разным экологическим нишам, формируется частичная репродуктивная изоляция – совсем как у высших организмов в процессе симпатрического видообразования (см. главу 6). Эта изоляция основана не только на том, что микробы с разными адаптациями живут в разных местах и поэтому редко встречаются, но и на том, что по мере накопления нуклеотидных различий снижается вероятность гомологичной рекомбинации. По-видимому, прокариот все-таки нельзя считать «единым сверхполиморфным видом» (как предлагали некоторые теоретики, исходившие из предположения, что микробы обмениваются генами с кем попало независимо от степени родства). У прокариот, как и у высших организмов, могут существовать частично изолированные популяционные генофонды.
   Что же касается случаев ГПГ между неродственными микробами, то они, по-видимому, представляют собой лишь вершину айсберга – легко обнаруживаемый и имеющий важные эволюционные последствия, но все-таки сравнительно редкий побочный эффект способности микробов заимствовать гены у своей ближайшей родни.
   Получены и другие данные, указывающие на неожиданно высокие темпы внутривидового ГПГ и гомологичной рекомбинации у бактерий (Fell et al., 2000; Takuno et al., 2012; Yahara et al., 2012) и архей (Papke et al., 2004). Конечно, интенсивность генетического обмена у них все равно гораздо ниже той, что характерна для эукариот, практикующих амфимиксис. Главный вывод из этих работ состоит в том, что секс у прокариот играет, по-видимому, ту же роль, что и у эукариот. Он повышает адаптационные возможности организмов путем разрушения связей между полезными и вредными мутациями и позволяет отбору работать с отдельными генами, а не с целыми геномами. Более того, благодаря положительной корреляции между сходством последовательностей ДНК и вероятностью гомологичной рекомбинации (напомним, что это исходный, предковый механизм выбора брачного партнера) (Majewski et al., 2000; Dubnau, 1999; Thomas, Nielsen, 2005) у микробов формируются хорошо перемешанные видовые генофонды, к которым приложимы классические популяционно-генетические подходы (Jeltsch, 2003).
   Даже родственные микробы, живущие в одних и тех же местообитаниях, могут подразделяться на популяции с полуизолированными генофондами, подобные «биологическим видам» эукариот. Это показано не только для морских бактерий Vibrio, но и для других микробов – например, для совместно встречающихся разновидностей архебактерий Ferroplasma[43] (Eppley et al., 2007).

От горизонтального переноса генов к половому размножению

   Моментом зарождения жизни логично считать момент появления первого репликатора – сообщества молекул РНК, помогавших друг другу размножаться. Чем больше мы узнаем о свойствах рибозимов (молекул РНК, способных выполнять активную «работу» подобно белковым ферментам), тем яснее становится, что рибозимы – великие мастера по части разрезания, перекомбинирования и сшивания фрагментов РНК, т. е. по части рекомбинации. Репликация, или матричный синтез, – сборка комплементарных молекул РНК из отдельных нуклеотидов – дается им с гораздо большим трудом. Скорее всего, размножение первых репликаторов было основано не столько на матричном синтезе – репликации РНК, сколько на рекомбинации – сборке молекул, комплементарных матрице, из подходящих фрагментов – олигонуклеотидов (Vaidya et al., 2012).
   Без постоянного обмена участками между рибозимами эволюция жизни, наверное, даже не смогла бы стартовать. Поэтому мы и сказали, что секс, возможно, появился раньше жизни! Но об этих увлекательных предметах можно написать еще одну книгу, поэтому сейчас мы только попробуем разобраться с происхождением «настоящего» полового размножения – эукариотического амфимиксиса.
   Хотя параллели между ГПГ и амфимиксисом очевидны, эти явления обычно считают аналогичными, но не гомологичными. То есть сходными, но имеющими разное происхождение.
   Однако есть основания предполагать, что половое размножение могло напрямую произойти от прокариотического ГПГ. Возможно, амфимиксис является закономерным итогом эволюции механизмов ГПГ. Попробуем обосновать эту гипотезу.
   Прежде всего нужно выяснить, когда появился амфимиксис. Традиционно считалось, что первые эукариоты были бесполыми (апомиктическими) и размножались простым делением. Иными словами, постулировалось существование предковых апомиктических эукариот, которые затем постепенно приобрели амфимиксис, пройдя через те или иные промежуточные этапы (Margulis, Sagan, 1986; Kondrashov, 1994).
   Среди современных одноклеточных эукариот есть группы (воротничковые жгутиконосцы – предки животных, обыкновенные амебы и другие), представители которых никогда не размножаются половым путем – только простым делением. Думали, что по крайней мере часть этих бесполых групп являются первично-бесполыми, т. е. не утратившими половое размножение, а никогда его не имевшими. Однако в геномах всех этих групп нашлись «генетические рудименты» – следы наличия амфимиксиса в прошлом (Schurko et al., 2009). Похоже, все современные эукариоты происходят от предков, практиковавших амфимиксис. Это позволяет предположить, что появление амфимиксиса предшествовало появлению эукариот или, может быть, оба события произошли одновременно.
   Напомним, что «колыбелью» эукариотической клетки были древние микробные сообщества (бактериальные маты), а большой красной кнопкой, запустившей конвейер формирования эукариот, стал, вероятно, переход цианобактерий к кислородному фотосинтезу (Марков, 2010). Для тогдашних живых существ кислород был ядом. Примерно 2,4–2,2 млрд лет назад произошла «великая кислородная революция», изменившая облик планеты. Атмосфера и гидросфера насытились кислородом, химические элементы перешли из восстановленных форм в окисленные. Многие микробы тогда вымерли, другие сохранились только в анаэробных (бескислородных) убежищах, а остальные приспособились к новому яду, причем разные прокариоты сделали это по-разному. Фотосинтезирующие бактерии выработали систему обезвреживания кислорода на основе молекулярных систем фотосинтеза (электроннотранспортных цепей) – так появилось кислородное дыхание. Другие бактерии приобрели другие защитные средства. Что касается предков эукариот, то они, по-видимому, поначалу спасались благодаря активному заимствованию чужих генов. В их эволюции был период необычайно интенсивного ГПГ. Они не только позаимствовали у соседей по микробному сообществу набор ферментов, позволяющих жить в присутствии кислорода, но и приобрели способность комфортно обустраивать в своих клетках симбионтов. В конце концов предки эукариот вступили в симбиоз с аэробной (дышащей кислородом) бактерией, которая дала начало митохондриям.
   Таким образом, предки эукариот заимствовали много генов у неродственных микробов. Мы знаем, что у современных микробов в ходе ГПГ «незаконная рекомбинация» происходит реже, чем гомологичная, а у неродственных микроорганизмов гены заимствуются реже, чем у близких форм. Отсюда вывод: если предки эукариот активно заимствовали гены у неродственников, то со «своими» они, скорее всего, менялись генами еще чаще.
   Мы предполагаем, что амфимиксис развился параллельно со становлением эукариотической клетки – как естественный итог развития механизмов ГПГ в условиях, когда отбор способствовал росту интенсивности генетического обмена. Чтобы пояснить эту мысль, нужно ответить на два ключевых вопроса. Начнем по порядку.
1. ПОЧЕМУ ОТБОР, ДЕЙСТВОВАВШИЙ НА ПРЕДКОВ ЭУКАРИОТ, ДОЛЖЕН БЫЛ СПОСОБСТВОВАТЬ ИНТЕНСИФИКАЦИИ ГЕНЕТИЧЕСКОГО ОБМЕНА МЕЖДУ РОДСТВЕННИКАМИ?
   Мы уже знаем, что секс полезен, потому что помогает отбору избавляться от вредных мутаций и накапливать полезные. К этому нужно добавить, что полезные эффекты проявляются тем сильнее, чем больший процент генов подвергается «перетасовке» и обмену в каждом поколении. Если вы обмениваете 50 % своих генов (как эукариоты при половом размножении), это надежнее защитит вас от вырождения, чем при обмене 1 % или 10 % генов (а прокариоты едва ли способны на большее).
   Что касается протоэукариот, то они подвергались особенно сильному риску генетического вырождения. Во-первых, на ранних этапах «кислородной революции» кислород в микробных сообществах уже появился, а озонового слоя в атмосфере еще не было. Следовательно, поверхность планеты и те мелководья, где жили цианобактериальные маты – колыбель эукариот, подвергались интенсивному ультрафиолетовому облучению. В присутствии кислорода под действием ультрафиолета образуются АФК (активные формы кислорода) – сильнейшие мутагены. Скорость мутирования должна была решительно вырасти, что повышало риск вырождения (ведь вредных мутаций всегда возникает намного больше, чем полезных).
   Во-вторых, у протоэукариот по сравнению с их предками археями резко увеличился геном – точнее, его «полезная» часть, мутации в которой влияют на приспособленность. Он сложился из архейного генома и геномов прижившихся симбионтов. Между тем известно, что угроза генетического вырождения быстро растет по мере увеличения генома. Чем больше геном, тем больше в нем возникает вредных мутаций в каждом поколении (при неизменной скорости мутирования в расчете на нуклеотид).
   Таким образом, угроза генетического вырождения должна была встать перед древними эукариотами в полный рост. Поскольку секс прекрасно защищает от этой угрозы, отбор должен был содействовать адептам сексуальной революции, делая генетический обмен все более интенсивным.
2. ПОЧЕМУ ОТБОР НА ИНТЕНСИФИКАЦИЮ ГПГ СПРОВОЦИРОВАЛ ПЕРЕХОД К АМФИМИКСИСУ?
   Прокариотический секс не может достичь оптимальной (т. е. высокой) интенсивности по нескольким причинам. Среди них и риск приобретения неподходящих фрагментов ДНК, и засилье эгоистических элементов, контролирующих ГПГ, – таких как конъюгационные плазмиды, «заботящиеся» больше о собственном распространении, чем об интересах хозяина. Но самая удивительная (и возможно, важнейшая) причина в другом. Она связана с конфликтом интересов[44] между генами, участвующими в гомологичной рекомбинации. Когда бактерия заглатывает кусок ДНК и заменяет им гомологичный фрагмент собственной хромосомы, то это выгодно заимствованному фрагменту (он получает шанс размножиться), но в высшей степени невыгодно заменяемому фрагменту собственной хромосомы бактерии. Ведь он обречен на гибель, он будет разобран на нуклеотиды и не перейдет в следующее поколение.
   Способность к активному заимствованию чужих генов (трансформации), как и другие признаки, находится под генетическим контролем. Иными словами, мутации могут влиять на частоту трансформации. Допустим, у бактерии есть ген (назовем его tr), от состояния которого зависит эта частота. Такие гены называют модификаторами. Ген tr – модификатор трансформации. У него есть два аллельных варианта: tr+ и tr−. Бактерии с аллелем tr+ заимствуют чужие гомологичные гены и заменяют ими свои собственные. Бактерии с аллелем tr− этого не делают. Трансформация полезна – она дает все преимущества, о которых мы говорили выше. Какой же из двух аллелей победит в конкуренции? Какой из них зафиксируется, а какой элиминируется?
   Моделирование показывает, что если бы ген tr сам не участвовал в трансформации, то непременно зафиксировался бы аллель tr+. Что и неудивительно, ведь он полезен.
   К несчастью (для микробов), защитить его от трансформации практически нереально. Если уж бактерия меняет свои гены, то и ген – модификатор трансформации tr тоже будет подлежать обмену. А теперь – внимание! – самое интересное. Аллель tr+ в результате трансформации будет систематически заменяться аллелем tr−. А вот в обратную сторону генетический обмен работать не будет: ведь бактерии с аллелем tr− не трансформируются.
   Получается, что аллель tr+ – это ген-самоубийца. Он будет то и дело замещать себя своим конкурентом – аллелем tr−. «Хитрым» аллелем, который и другим генам не дает трансформироваться, но и себя никем не замещает.
   Аллель tr− яркий пример эгоистичного гена. Его частота в генофонде популяции будет расти вопреки тому, что он вреден. Он вреден ровно в той мере, в какой при данных условиях полезен секс. Аллель tr− снижает приспособленность и особей, и популяции в целом, но все равно наращивает свою численность в генофонде – просто потому, что не практикует гибельное самозамещение, как его конкурент tr+, полезный всем, кроме самого себя.
   В результате частота самой интересной и перспективной разновидности прокариотического секса (трансформации с гомологичной рекомбинацией) вынуждена оставаться низкой – гораздо ниже того уровня, который обеспечивает наилучшую защиту от вырождения. «Суицидальный эффект» генов – модификаторов трансформации не позволяет горизонтальному переносу генов достичь оптимального уровня интенсивности.
   Та же логика работает и в отношении другого способа прокариотического секса – конъюгации. Мы не будем утомлять читателей детальной аргументацией этого тезиса: просто примите на веру или проверьте сами при помощи компьютерного моделирования или по литературным данным (обратите при этом внимание на хитрые адаптации, выработанные конъюгационными плазмидами для предотвращения попадания в зараженную клетку других плазмид – эти адпатации аналогичны нашему аллелю tr−).
   Итак, налицо классический эволюционный тупик. Микробам с разросшимися геномами, подвергающимся к тому же воздействию сильных мутагенов, было бы выгодно перейти к более интенсивному генетическому обмену. Но они не могут этого сделать из-за конфликта интересов между теми генами, которые подлежат замене и уничтожению в ходе гомологичной рекомбинации, и геномом в целом. Интересы последнего совпадают с интересами особи и популяции, но все тщетно: отбор на уровне генов берет верх и над индивидуальным, и над групповым отбором.
   Можно ли устранить конфликт интересов? Очевидно, для этого нужно сделать так, чтобы заменяемые гены не шли «на выброс», не погибали, а сохраняли в полной мере свой шанс перейти к потомкам. Тогда отбор уже не будет поддерживать возникающие в них мутации, препятствующие сексу. Но как этого добиться?
   Вдумчивые читатели, наверное, уже догадались, что переход к амфимиксису – полногеномному взаимному генетическому обмену – как раз и является спасительным выходом из тупика.
   В прокариотическом ГПГ участвуют один целый геном и обрывок другого. После обмена гомологичными участками остается опять-таки один целый (обновленный) геном и ненужные обрывки, которые некуда пристроить, которые годны только на запчасти-нуклеотиды. Для них все кончено, они уже не перейдут к потомкам. Любая мутация, защищающая ген от такой безысходной судьбы, получает шанс распространиться.
   В полногеномном взаимном обмене участвуют два целых генома. После обмена гомологичными участками остается по-прежнему два целых генома. Это совсем другое дело! Теперь клетка, в которой находятся эти геномы, может просто поделиться, отправив в каждую из дочерних клеток по одному геному[45]. Еще и на репликации сэкономит, а главное – никто не обижен, никто не идет на выброс. Следовательно, нет и оснований для распространения мутаций, защищающих гены от рекомбинации.
   Только переход к полногеномному взаимному генетическому обмену мог сделать интенсивную межорганизменную рекомбинацию эволюционно стабильной, т. е. защищенной от эгоистичных аллелей, подобных tr−. Именно это, как мы думаем, и произошло у древних эукариот.
   Промежуточным звеном на пути от ГПГ к амфимиксису могла стать взаимная конъюгация с образованием цитоплазматических мостиков и рекомбинацией геномной ДНК двух клеток (Gross, Bhattacharya, 2010). Нечто похожее на такое промежуточное звено, а именно конъюгация с образованием цитоплазматических мостиков, передачей геномной ДНК и с возможностью каждой клетки быть как донором, так и реципиентом, обнаружено у галофильных (солелюбивых) архей Haloferax (Halobacterium) volcanii (Rosenshine et al., 1989; Ortenberg et al., 1998).
   Итак, половое размножение эукариот, возможно, является не просто аналогом, а прямым наследником прокариотического секса.

Плата за секс, или Двойная цена самцов

   Микробы, изредка меняющие несколько своих генов на заимствованные у соседей копии, возможно, платят за секс немного. Особенно если учесть, что механизм гомологичной рекомбинации, основанный на комплементарности, снижает риск попадания в геном чего-то совсем уж неподходящего, а возможность использовать чужую ДНК просто в качестве пищи служит дополнительным бонусом. Цена невысока, но и выигрыш от такого секса невелик. Он выше у амфиктических, раздельнополых организмов. Но и платят они за секс гораздо больше. Платить приходится за самцов, и цена получается удвоенная.
   Суть в том, что при прочих равных бесполое клональное размножение (или самооплодотворение) ровно в два раза эффективнее, чем перекрестное оплодотворение с участием самцов (см. рисунок). Эту проблему рассмотрел выдающийся эволюционист Джон Мэйнард Смит (1920–2004) в книге The Evolution of Sex (1978).

   Схема, иллюстрирующая «двойную цену самцов». У раздельнополых организмов половину потомства каждой самки составляют самцы, которые сами никакого потомства произвести не могут. При бесполом размножении все потомство состоит из самок (при самооплодотворении – из самостоятельно размножающихся гермафродитов). Поэтому при прочих равных размножение без участия самцов вдвое эффективнее, чем с самцами. На рисунке показана ситуация, когда каждая самка производит ровно двух потомков.

   Получается, что самцы обходятся популяции непомерно дорого. Отказ от них дает значительный выигрыш в скорости размножения. Мы уже знаем, что переход от раздельнополости и перекрестного оплодотворения к бесполому размножению или самооплодотворению технически вполне возможен. Тому есть масса примеров как у растений, так и у животных. Однако бесполые расы и популяции самооплодотворяющихся гермафродитов почему-то до сих пор так и не вытеснили тех, кто размножается «обычным» образом, с участием самцов.
   Из этого следует, что секс вообще (и раздельнополый секс в частности) должен давать настолько важные преимущества, что они перекрывают даже двойной проигрыш в эффективности размножения. Причем эти преимущества должны проявляться быстро, а не когда-нибудь через миллион лет. Повторим, что естественному отбору нет дела до отдаленных перспектив.

Еще о пользе секса, или Лучше меньше, да лучше

   Биологи из Орегонского университета (Morran et al., 2009) работали с уже знакомым нам червем C. elegans. Эти прекрасные животные словно нарочно созданы для проверки гипотез о пользе секса. Как мы помним, у них нет самок. Популяции состоят из самцов и гермафродитов, причем последних больше. Гермафродиты производят сперматозоиды и яйцеклетки и могут размножаться без посторонней помощи путем самооплодотворения. Самцы производят только сперматозоиды и могут оплодотворять гермафродитов. В результате самооплодотворения на свет появляются только гермафродиты. При перекрестном оплодотворении половина потомства оказывается гермафродитами, половина – самцами. Частота перекрестного оплодотворения в популяциях C. elegans обычно не превышает нескольких процентов. Чтобы определить эту частоту, не нужно следить за интимной жизнью червей – достаточно знать процент самцов в популяции.

   У круглых червей Caenorhabditis elegans нет самок, а есть только самцы (вверху) и гермафродиты (внизу). Гермафродитов можно отличить по тоненькому длинному хвостику.

   Следует пояснить, что самооплодотворение – не совсем то же самое, что бесполое (клональное) размножение, однако различия между ними быстро сходят на нет в череде самооплодотворяющихся поколений. После этого потомство перестает отличаться от родителей генетически, точно так же, как и при клональном размножении.
   У C. elegans известны мутации, влияющие на частоту перекрестного оплодотворения. Одна из них, xol-1, смертельна для самцов и фактически приводит к тому, что в популяции остаются только гермафродиты. Другая, fog-2, лишает гермафродитов способности производить сперму и фактически превращает их в самок. Популяция, в которой все особи несут эту мутацию, становится обычной раздельнополой популяцией, как у большинства животных.

   Схема экспериментальной установки. Молодых червей каждого нового поколения помещают в левую половину чашки (белый кружок). Чтобы добраться до еды (серый овал), они должны преодолеть барьер. Слабые особи, перегруженные вредными мутациями, не справляются с этой задачей. Из Morran et al., 2009.

   Авторы при помощи классических методов (путем скрещиваний, а не генной инженерии) вывели две породы червей с почти одинаковыми геномами, различающимися только наличием мутаций xol-1 и fog-2. У первой породы была мутация xol-1, и нематоды размножались только самооплодотворением. У второй имелась мутация fog-2, так что эти черви размножались только путем перекрестного оплодотворения. К каждой породе прилагалась третья, лишенная обеих мутаций (дикий тип, ДТ). У ДТ частота перекрестного оплодотворения около 5 %. С этими тройками были проведены следующие две серии экспериментов.
   В первой серии проверялась гипотеза о том, что перекрестное оплодотворение помогает избавляться от вредных мутаций. Эксперимент продолжался 50 поколений (червей, разумеется, а не экспериментаторов). Каждое поколение червей подвергалось действию химического мутагена – этилметансульфоната. Это увеличило частоту мутирования в четыре раза. Молодых животных помещали в чашку Петри, разделенную пополам барьером из крохотных кирпичиков (см. рисунок), причем червей сажали в одну половину чашки, а их пища (бактерии E. coli) находилась в другой половине. Таким образом, чтобы добраться до еды, а значит получить шанс выжить и оставить потомство, черви должны были преодолеть барьер. Тем самым экспериментаторы повысили эффективность очищающего отбора, который отсеивает вредные мутации. В обычных лабораторных условиях эффективность отбора низка, потому что черви окружены пищей со всех сторон. Это позволяет выжить даже очень слабым животным, перегруженным вредными мутациями. В новой экспериментальной установке этой уравниловке был положен конец. Чтобы преодолеть стенку, червь должен быть здоров и крепок.
   Ученые сравнивали приспособленность червей до и после эксперимента, т. е. у особей первого и пятидесятого поколения. Червей C. elegans можно хранить в замороженном виде. Это очень удобно. Пока длился эксперимент, выборка червей первого поколения спокойно лежала в морозильнике. Приспособленность измеряли так: червей смешивали в равной пропорции с контрольными червями дикого типа, в геном которых был вставлен ген светящегося белка, и сажали в экспериментальную установку. Животным давали время, чтобы преодолеть барьер и размножиться, а затем определяли процент несветящихся особей в потомстве. Если этот процент увеличился в пятидесятом поколении по сравнению с первым – значит, в ходе эксперимента приспособленность выросла, если уменьшился – значит, имело место вырождение. В результате получилось, что искусственно повышенная скорость мутирования привела к вырождению (снижению приспособленности) всех пород червей, кроме «облигатных перекрестников». Эксперимент показал, что перекрестное оплодотворение – мощное средство борьбы с «генетическим грузом».
   Даже тем линиям, у которых мутагенез не был искусственно ускорен, высокая частота перекрестного оплодотворения дала преимущество. В обычных лабораторных условиях это преимущество не проявляется, потому что червям не нужно перелезать через стенки, чтобы добраться до корма. Однако в условиях эксперимента у «облигатных самооплодотворителей» даже без повышения скорости мутирования произошло вырождение.
   Кроме того, частота перекрестного оплодотворения у «диких» пород в ходе эксперимента выросла по сравнению с исходными на 5 %. Это, пожалуй, самый важный результат. Он означает, что в жестких условиях преимущество получают особи, размножающиеся путем перекрестного оплодотворения. Их потомство оказывается более жизнеспособным, и поэтому в ходе эксперимента автоматически идет отбор на склонность к перекрестному оплодотворению.
   Таким образом, этот эксперимент подтвердил гипотезу о том, что секс выгоден популяции, несмотря на «двойную цену самцов». Он помогает популяции избавляться от вредных мутаций и эффективно приспосабливаться к жизненным неурядицам.
   Во второй серии экспериментов проверялось, помогает ли перекрестное оплодотворение вырабатывать адаптации путем накопления полезных мутаций. На этот раз червям, чтобы добраться до пищи, нужно было преодолеть зону, заселенную бактериями Serratia. Эти бактерии, попадая в пищеварительный тракт C. elegans, вызывают у червя смертельное заболевание.
   Чтобы выжить, черви должны были либо научиться не глотать вредных бактерий, либо выработать устойчивость к ним. Какой из вариантов они выбрали – неизвестно, но за 40 поколений черви, практикующие секс, отлично приспособились к новым условиям, черви дикого типа приспособились хуже, а облигатные гермафродиты не приспособились совсем: их выживаемость в среде с вредными бактериями осталась на исходном низком уровне. И снова в ходе эксперимента у диких червей увеличилась частота перекрестного оплодотворения.
   Таким образом, перекрестное оплодотворение действительно помогает популяции приспосабливаться к меняющимся условиям, в данном случае – к появлению болезнетворного микроба. Тот факт, что в ходе эксперимента у дикого типа увеличилась частота перекрестного оплодотворения, означает, что спаривание с самцами (в противовес самооплодотворению) дает гермафродитам преимущество, перевешивающее «двойную цену», которую им приходится платить, производя на свет самцов.
   Как видим, выводы совпадают с результатами экспериментов на дрожжах, в которых тоже было показано, что секс способствует и отбраковке вредных мутаций, и накоплению полезных. Скорее всего, эти два эффекта взаимосвязаны и их не следует противопоставлять друг другу. Секс перетасовывает гены, позволяя отбору «отделять зерна от плевел» – распространять гены с полезными мутациями, одновременно избавляясь от генов с мутациями вредными. Это две стороны одной медали, и какая из них окажется более важной в данном месте и в данное время, зависит от многих факторов, включая темп мутагенеза и благоприятность условий.
   Читатель может возразить, что искусственные мутантные популяции и выдуманные для них трудности далеки от реальных природных условий. Но и природа, как показывают натурные исследования, против отказа от самцов, она велит относиться к ним бережно. Это доказывают печально известные факты из истории видов, на которые велась активная охота. Один из таких видов – азиатский сайгак. До середины ХХ века охотники в равной степени выбивали самцов и самок. После снижения численности охоту на этот вид резко ограничили, но браконьеры все равно продолжали отстреливать самцов сайгаков – за их рога отлично платили изготовители эзотерических восточных снадобий. Но отстреливали только лучших самцов с красивыми и большими рогами. Другие, те, что поплоше, оставались, и именно им выпала честь оставлять свои гены потомству. В этом случае проигрыша в числе потомков нет, так как ни самок, ни детенышей не отстреливают. Есть только на первый взгляд эфемерный и не поддающийся количественной оценке ущерб от снижения качества генов, привносимых самцами. Ясно, что в генофонд популяции поступала не самая качественная часть, качественной распоряжались браконьеры. В результате там, где браконьеры хозяйничали особенно активно, стало явным вырождение животных и катастрофическое снижение их численности. Там, где велась регулируемая законная охота, признаков вырождения нет и численность популяций хоть и снизилась в 1970-е годы, но остается относительно стабильной (Мельников, Сидоров, 2009).

Секс против паразитов

   Как мы уже знаем, секс особенно полезен в нестабильных условиях. Одним из мощных факторов нестабильности является эволюционная гонка вооружений с паразитами. Эволюционируя, паразиты меняют «условия среды» для своих жертв. Вырабатывая новые адаптации, паразит как бы спихивает жертву вниз с завоеванных ею высот на ландшафте приспособленности. При этом приспособленность жертвы падает, но вероятность появления новых полезных мутаций (защищающих от паразита) повышается. Поэтому многие считают, что именно паразиты не позволяют большинству живых существ отказаться от секса. Нужно помнить, что паразиты вездесущи и вероятность умереть от паразитарных инфекций для многих организмов существенно выше, чем от хищника или несчастного случая.
   Паразиты беспрестанно «изобретают» новые способы повышения своей вирулентности, поэтому хозяевам приходится бесконечно совершенствовать способы защиты. К этой ситуации приложима гипотеза Черной Королевы[46], выдвинутая американским палеонтологом Ли ван Валеном в 1970-х годах. Хищники и жертвы, хозяева и паразиты находятся в постоянном соревновании – кто быстрее изобретет новые средства нападения и защиты, у кого они окажутся эффективнее. Стоит одной стороне замедлить свое эволюционное движение, как преимущество получает вторая сторона, а первая проигрывает: популяция теряет численность и вымирает. Половое размножение служит надежным подспорьем в этой гонке вооружений, в коэволюционном процессе.
   Гипотеза о том, что именно паразиты «заставляют» организмы неизменно обращаться к сексу, получает все больше подтверждений. Эффективность полового размножения для поддержания устойчивости к инфекциям сначала была показана с помощью моделирования (Hamilton et al., 1990). Но все же факты убедительнее, чем модели.
   Первые прямые подтверждения «паразитарной» гипотезы были получены на рыбках пецилиопсисах. Они страдают от паразитических червей – трематод, вызывающих появление на коже белых пятен. Так что степень зараженности легко увидеть и проконтролировать.
   В разных прудах обитали пецилиопсисы, размножающиеся как бесполым путем (партеногенетически), так и половым. Самыми зараженными были именно бесполые популяции, а те, кто размножался половым путем, вместе с одним малочисленным бесполым клоном, оказались менее подвержены инфекции. Очевидно, что для противодействия паразитам нужно постоянно разнообразить и обновлять способы защиты, а такую возможность имеют те, кто размножается половым путем. Слабоинфицированный редкий клон также оказался вне «интересов» паразита. Паразиту выгоднее выработать высокую вирулентность к массовому хозяину, чем к экзотическим единицам. Поэтому отбор поддерживал у паразитов такие наследственные изменения, которые позволяли им эффективно заражать массового хозяина, не имеющего возможности быстро приспособиться и противостоять постоянно обновляемым способам заражения.
   Природа сама поставила эксперимент, подтвердивший необходимость секса и создаваемого им генетического разнообразия. В 1976 году случилась засуха, пруды – естественные местообитания пецилиопсисов – пересохли. В одном из прудов выжило лишь несколько рыбок. Их потомство впоследствии составило все население пруда. Получилась популяция с очень низким уровнем генетического разнообразия. Рыбки размножались половым путем – но что толку, если гены у всех одинаковые? Пецилиопсисы в этом пруду были сильно заражены трематодами. Но стоило ученым подсадить в пруд нескольких чужеродных и склонных к сексу самок, как ситуация кардинально улучшилась. Генетическое разнообразие рыб повысилось, и рыбы перестали болеть (Lively et al., 1990).
   Недавно Курт Лайвли из Университета Индианы и его коллеги представили еще более убедительное доказательство преимуществ секса перед лицом инфекционной опасности. Мало того, ученым удалось показать, что присутствие паразитов делает секс необходимым условием выживания вида (Morran et al., 2011).
   Опыты проводились все на том же универсальном объекте – черве C. elegans. В качестве стартовой точки были взяты естественные популяции с уровнем перекрестного оплодотворения около 20 %. Их подвергли воздействию паразита, смертельного для нематоды. Причем воздействие было двух типов. В первом случае популяцию в течение ряда поколений заражали одним и тем же штаммом бактерии, а во втором – отбирали все более вирулентных паразитов. Метод отбора бактерий на вирулентность изящен и прост – паразитов брали с трупов нематод, погибших в течение первых суток. Иными словами, тех, против которых не сработали имеющиеся системы защиты. Первый случай получил в статье условное наименование «эволюция», а второй – «коэволюция». Осталось измерить, как менялась в ряду поколений доля нематод, размножающихся путем перекрестного и самооплодотворения.

   Так меняется доля скрещивающихся особей в ряду поколений нематод. Контроль показывает природную популяцию, которую не подвергали действию паразитов; эволюция – природную популяцию поместили в условия стабильной инфекции; коэволюция – нематод подвергли действию паразита, постоянно увеличивающего свою вирулентность. Из Morran et al., 2011.

   Результат оказался в высшей степени предсказуемым. Контрольная популяция поддерживала постоянный, исходный уровень сексуальности. В популяции, в которой вирулентность паразитов оставалась постоянной, в течение первых десяти поколений доля скрещивающихся особей резко увеличилась (до 80 %), а затем вернулась на прежний 20-процентный уровень. Наконец, в популяции, где паразиты эволюционировали, доля скрещивающихся особей за десять поколений тоже достигла отметки 80 %, но после не снизилась, а продолжала увеличиваться. Через 20 поколений она достигла 90 %.
   Если популяцию, состоящую только из гермафродитов, лишенных способности к перекрестному оплодотворению и обмену генами, поставить в условия коэволюции, через 20 поколений все черви погибнут. Наоборот, в популяции червей, практикующих только перекрестное оплодотворение, смертность от паразита через 30 поколений оказывается самой низкой.
   Таким образом, интенсивный обмен генами, обеспечиваемый половым размножением, определяет способность популяции сопротивляться инфекциям. В условиях постоянного присутствия эволюционирующих паразитов отказ от секса ведет к вымиранию. В данном контексте паразитов можно заменить и хищниками, и конкурентами, и даже изменчивыми абиотическими факторами.

У бесполых организмов убыль выше прибыли

   До сих пор мы вели разговор о преимуществах полового и бесполого размножений для особей одного и того же вида. Но в природе сравниваются по приспособленности не только особи одного вида между собой, но и особи разных видов, занимающие более или менее сходные условия. Здесь особенно важно успеть вперед конкурента – занять часть ареала, заполнить как можно большее пространство. В этой ситуации тот вид, который дает большее число потомков, должен бы получить территориальное преимущество и вытеснить медленного соперника. А как мы уже уяснили, быстрее размножаются бесполые и самооплодотворяющиеся организмы. Пусть они в итоге окажутся хуже приспособленными, но зато их раздельнополым конкурентам просто негде и некогда будет развернуться. Почему тогда бесполые организмы не вытеснили полностью раздельнополых? На этот вопрос помогают ответить примеры с растениями.
   Семейство пасленовых – на редкость удобный объект для изучения эволюционных преимуществ полового и бесполого размножения, именно с ним и работали американские и британские биологи (Goldberg et al., 2010). Во-первых, пасленовые – очень разнообразная группа и к тому же прекрасно изученная. Во-вторых, у пасленовых имеется очень подходящий признак – самонесовместимость. Самонесовместимость, или отторжение родственной пыльцы, – свойство, предохраняющее растения от самооплодотворения, заставляющее их смешивать свои гены с генами других особей. Самонесовместимость интересна тем, что распространена среди пасленовых довольно хаотично. Во многих родах пасленовых одни виды имеют систему самонесовместимости, тогда как другие виды того же рода ее не имеют. При этом наличие или отсутствие самонесовместимости не коррелирует с другими признаками этих растений. Ученые задались вопросом, существует ли корреляция между самонесовместимостью и темпами диверсификации.

   Схема механизма самонесовместимости у растений. Если аллельное состояние гена S («локуса несовместимости») совпадает у пыльцевого зерна и пестика, на чье рыльце оно попало, прорастание пыльцы блокируется, и оплодотворение не происходит. Геном пыльцы гаплоидный, взрослого растения – диплоидный, поэтому у каждого пыльцевого зерна обозначен один аллель S-локуса, а у пестика – два.

   В семействе пасленовых около 2700 видов, из которых 41 % имеет систему самонесовместимости, 57 % ее не имеют, а 2 % видов – двудомные, т. е. имеющие отдельные мужские и женские растения, так что для них проблема самооплодотворения неактуальна. Авторы построили эволюционное дерево для 356 видов пасленовых, по которым есть молекулярные данные (дерево строилось по последовательностям двух ядерных генов и четырех пластидных) и для которых установлено наличие или отсутствие самонесовместимости.
   Анализ получившегося дерева показал, что самонесовместимость унаследована пасленовыми от общего предка и с тех пор многократно утрачивалась в разных эволюционных линиях. Утратить эту систему легко, а восстановить – трудно, потому что это сложный молекулярный комплекс, состоящий из множества специализированных белков. В эволюции пасленовых, по-видимому, не было случаев восстановления самонесовместимости после ее утраты.
   Понятно, почему самонесовместимость часто утрачивается. Переход к самооплодотворению дает немедленное преимущество в эффективности распространения своих генов. К тому же самооплодотворение выгодно, когда с доставкой пыльцы от других особей возникают трудности – например, из-за большой разреженности популяции. Непонятно другое: если этот признак часто утрачивается и почти никогда не восстанавливается, почему до сих пор сохранилось так много видов, обладающих системой самонесовместимости?
   Расчеты по построенному филогенетическому дереву показали, что темп видообразования у видов, практикующих самоопыление, значительно выше, чем у самонесовместимых. Понятно, что высокая скорость видообразования у самоопыляющихся растений связана с тем, что у них возникшие полезные комбинации аллелей не «размываются». В итоге одно-единственное растение с подходящей комбинацией аллелей, попавшее в необычные условия, способно дать начало новому виду.
   Однако темп вымирания у них еще выше. Почему они чаще вымирают, тоже понятно: ведь у них из-за самоопыления должны быстрее накапливаться вредные мутации и реже фиксироваться мутации полезные. Так что итоговое число самоопыляющихся видов не повышается. Несмотря на то что совокупность самонесовместимых видов убывает за счет превращения их в самоопыляющиеся, число самонесовместимых видов не снижается. Этому препятствует то обстоятельство, что самонесовместимые виды реже вымирают, передавая видам-потомкам самонесовместимость по наследству. Темп вымирания у них не превышает темп появления новых видов. В результате такого соотношения вымирания и появления и даже с учетом перехода некоторых в группу бесполых штрейкбрехеров число самонесовместимых видов остается на постоянном уровне (порядка 30–40 %).
   Исследование показало, что естественный отбор может действовать не только на уровне генов и особей, но и на уровне целых видов. Такой отбор способен длительно сохранять сложный признак, который в каждой отдельно взятой эволюционной линии имеет тенденцию исчезать и почти никогда не появляется вновь. Но нужно помнить, что медлительный и малоэффективный межвидовой отбор может лишь поддерживать такой признак, но не может его создать. Подобным творческим потенциалом обладает только отбор на более низких уровнях: генов, особей или, в некоторых особых случаях, групп особей[47].

Почему самцов и самок почти всегда поровну?

   У большинства раздельнополых животных поддерживается соотношение полов, близкое к 1:1. Это рационально для моногамных видов, образующих устойчивые брачные пары. Но моногамия – редкое явление в животном мире. Гораздо больше существует видов, у которых о потомстве заботятся только самки, а роль самца ограничивается спариванием. Например, самцы павлинов тратят кучу энергии на отращивание своих прекрасных хвостов, едят пищу, которая пригодилась бы самкам, – короче говоря, только зря топчут землю и занимают жизненное пространство. Животноводам известно, что на большое стадо коров достаточно одного быка, остальных самцов можно смело пускать на мясо. Если тщательно отнестись к выбору производителя, то никакого вырождения породы от этого не происходит. Природа, как кажется, производит самцов с большим избытком. У стадных копытных самцы могут быть полезны для коллективной обороны стада от хищников, но чаще самцы не делают и этого. Даже если рассмотреть виды, у которых от самцов есть какая-то польза, кроме производства спермы, все равно нет оснований полагать, что при любом климате, образе жизни, способе питания и вражеском окружении соотношение полов 1:1 является оптимальным для любого вида животных. Если бы это соотношение определялось интересами вида, мы бы наверняка наблюдали разное соотношение полов у разных видов. Однако мы за редчайшими исключениями везде наблюдаем одно и то же соотношение 1:1 – у моногамных и полигамных видов, у заботящихся о потомстве и у тех, кто бросает детей на произвол судьбы, у хищников и их жертв, у тех, кто организует коллективную оборону от хищников, и тех, кто этого не делает.
   Красивое решение загадки предложил Рональд Фишер (а дальнейшие изыскания подтвердили, что решение было правильное). Дело в том, что равное соотношение полов в большинстве случаев является единственной эволюционно стабильной стратегией. Это значит, что только при таком соотношении полов никакая мутация, меняющая эта соотношение, не окажется выгодной для ее носителя. Рассмотрим воображаемую ситуацию, когда у некоего вида самки рожают сыновей и дочерей не поровну, а в пропорции 1:4. Соответственно, в популяции на каждого самца будет приходиться четыре самки. Допустим, что это соотношение является оптимальным с точки зрения «интересов вида». Но такая ситуация эволюционно нестабильна, и вот почему. В нашей популяции хоть самцов и меньше, чем самок, каждый детеныш все равно имеет только одну мать и одного отца. Допустим, популяция состоит из 1000 особей, из них 200 самцов и 800 самок, и каждый год в популяции рождается 1000 детенышей. Тогда получается, что каждая самка оставит в среднем 1000/800 = 1,25 детеныша, а самец – 1000/200 = 5. Получается, что самцы размножаются в четыре раза эффективнее! Иными словами, в такой популяции быть самцом в четыре раза выгоднее, чем самкой.
   Теперь посмотрим, что произойдет, если в популяции появится мутантный аллель, носительницы которого рожают больше детенышей мужского пола – например, не по одному сыну на каждые четыре дочери, а по одному сыну на две дочери. Очевидно, что самка, несущая этот аллель, оставит больше внуков, чем прочие самки. Следовательно, мутантный аллель начнет распространяться в популяции. Вскоре он неизбежно вытеснит конкурирующий (старый, немутантный) аллель, заставляющий самок рожать детей в соотношении 1:4. В итоге соотношение полов в популяции изменится: теперь самцов будет не вчетверо, а только вдвое меньше, чем самок. Нетрудно увидеть, что подобные мутации будут до тех пор менять соотношение полов, пока оно не станет равным 1:1. Только при таком соотношении никакая новая мутация, меняющая число рождаемых мальчиков и девочек, уже не станет полезной для самки и не будет поддержана отбором.
   Итак, в популяции установится соотношение полов 1:1, и никого не волнует, что вид в целом от этого только проиграет. Вид может в конце концов даже вымереть – что ж, тем хуже для него. Соотношение полов 1:1 – это не адаптация, полезная для вида, а почти неизбежный побочный эффект раздельнополости. Это следствие конкуренции между эгоистичными репликаторами, не имеющее отношения к благу вида или биосферы.
   Из этого правила есть ряд исключений, которые, как водится, только подверждают его. Например, у некоторых насекомых (бабочек, мух, жуков) доля самцов в популяции может быть снижена из-за деятельности паразитической бактерии вольбахии. Вольбахия живет внутри клеток насекомого-хозяина и не может передаваться горизонтально, т. е. заражать других насекомых. Вместо этого она передается вертикально, т. е. наследуется, причем только по материнской линии. Она проникает из материнского организма в яйцеклетки и таким образом передается потомству зараженной самки. В сперматозоид бактерия проникнуть не может – он слишком мал, и поэтому бактерии, живущие в самце, обречены погибнуть вместе с ним. С точки зрения бактерии хозяева-самцы – это тупик, западня. Поэтому отбор поддерживает у вольбахии такие мутации, которые способствуют уменьшению числа самцов в зараженной популяции. Некоторые штаммы вольбахии «научились» достигать этой цели, избирательно убивая эмбрионов мужского пола. В результате в зараженных популяциях насекомых на сотню самок может приходиться всего 1–2 самца. Как ни странно, такие популяции чувствуют себя отлично и не собираются вымирать. Некоторые эксперты предполагают, что насекомые на самом деле выигрывают от того, что вольбахия помогает им поддерживать оптимальное соотношение полов. Сами насекомые не могут этого добиться из-за конфликта интересов своих «эгоистичных генов», но бактерия приходит на помощь.
   Исключения, подтверждающие правило
   «Принцип Фишера», объясняющий, почему у раздельнополых животных рождается равное количество сыновей и дочерей, работает только при соблюдении ряда условий (что было отмечено самим Фишером).
   Во-первых, энергетические затраты родителей на потомков обоего пола должны быть равными. Если сыновья обходятся дороже, чем дочери, эволюционно стабильное соотношение полов будет смещено в сторону преобладания самок, и наоборот. Это, кстати, жестоко подтверждается и человеческой историей. В некоторых странах были такие исторические периоды, когда беднякам было выгодно иметь сыновей, но не дочерей. Сын мог поддержать немощных родителей в старости, поэтому растить его было выгодно. А дочь, вырастив, приходилось отдавать в чужой дом замуж – или, еще хуже, собирать ей дорогостоящее приданое. Поэтому крестьяне попросту не заботились о дочерях или вообще убивали их, «случайно» оставляя на скотном дворе с некормлеными свиньями. В результате соотношение мальчиков и девочек резко смещалось в сторону мальчиков. Когда выгода от выращивания мальчиков и девочек выравнивалась и устанавливались другие социальные и экономические условия, соотношение возвращалось к исходному 1:1.
   Во-вторых, при отдаленной гибридизации нередко наблюдается повышенная смертность одного из полов. Как правило, это гетерогаметный пол – тот, у которого половые хромосомы разные. У млекопитающих и мух это самцы, у птиц и бабочек – самки. В этом случае самке, скрестившейся с «чужаком», выгодно сместить соотношение полов у своего потомства в сторону преобладания более жизнеспособного (гомогаметного) пола. Такая ситуация описана у австралийских птиц Erythrura gouldiae (амадин Гульда), которые делятся на две разновидности: красноголовую и черноголовую. Амадины предпочитают «одноцветные» браки, потому что дочери от смешанных браков обладают пониженной жизнеспособностью. Оказалось, что самки амадины Гульда, вынужденные взять в мужья самца с «неправильным» цветом головы, производят на свет вчетверо больше сыновей, чем дочерей. Это позволяет им сгладить последствия неудачного замужества. Самок можно обмануть, перекрасив голову красноголового самца в черный цвет. Красноголовая самка, спарившаяся с таким перекрашенным самцом, производит на свет преимущественно сыновей. Это значит, что соотношение полов у потомства зависит не от совместимости генотипов родителей, а исключительно от мнения самки о том, насколько удачен ее брак. Каким образом самке удается регулировать соотношение полов у своих птенцов – пока неизвестно (Pryke, Griffith, 2009).
   Наконец, как показал великий эволюционист Уильям Гамильтон (1936–2000), острая конкуренция за самок между близкородственными самцами должна смещать стабильное соотношение полов в сторону преобладания дочерей. Высокая соревновательность наблюдается, когда спаривание происходит в пределах небольших групп родственных особей. Рассмотрим предельный случай – когда спариваются друг с другом сыновья и дочери одной самки. У некоторых членистоногих это в порядке вещей. Один самец может оплодотворить много самок, и чем больше у него будет партнерш, тем выше его репродуктивный успех. У самки нет столь веских причин гнаться за количеством партнеров: вполне хватит и одного, чтобы оплодотворить все ее яйцеклетки. Поэтому братья будут конкурировать за самок, а между сестрами такой конкуренции не будет. В итоге все сестры будут оплодотворены и оставят потомство, а многие из братьев останутся бездетными. В такой ситуации самке выгодно производить на свет побольше дочерей и поменьше сыновей. Ее репродуктивный успех (который удобно измерять количеством внуков) напрямую зависит от количества дочерей и почти не зависит от количества сыновей. Даже если сыновей будет мало, их все равно хватит, чтобы оплодотворить всех сестер. Если родить побольше сыновей, от этого ничего не изменится (внуков не прибавится). Поэтому при высокой родственной конкуренции соотношение полов под действием отбора должно смещаться в пользу самок.
   Теория Гамильтона подтверждается тем, что у видов с высоким уровнем конкуренции между родственными самцами в потомстве действительно преобладают самки, тогда как виды с низкой родственной конкуренцией имеют соотношение полов, близкое к 1:1. Но это все-таки косвенное подтверждение, которое при большом желании можно истолковать как-то иначе. Надо сказать, что биологи уже много лет с неослабевающим энтузиазмом ломают копья по поводу теорий Гамильтона. Он был великим теоретиком и придумал столько красивых теорий, что их еще надолго хватит.
   Недавно французским и португальским биологам удалось показать работоспособность идеи Гамильтона в эволюционном эксперименте на паутинных клещах Tetranychus urticae (Macke et al., 2011). Паутинные клещи удобны для таких исследований по двум причинам. Во-первых, у них часто наблюдается острая конкуренция за самок между родственными самцами. Клещи не жалуют далекие путешествия. Они обычно спариваются неподалеку от того места, где вылупились из яйца, а расселительную функцию берут на себя оплодотворенные самки. Уровень конкуренции определяется тем, сколько самок отложат яйца на данном микроучастке (например, на данном листе растения). Если мать-основательница всего одна, ее сыновья будут отчаянно конкурировать друг с другом за право спариться с сестрами. Чем больше родительниц, тем ниже братская конкуренция.
   Во-вторых, для паутинных клещей характерно гаплодиплоидное определение пола (как у перепончатокрылых насекомых). Самки клещей диплоидные и развиваются из оплодотворенных яиц, а самцы – гаплоидные и развиваются из неоплодотворенных яиц. Самка сохраняет полученную от партнера сперму и пользуется ей по собственному усмотрению, либо оплодотворяя откладываемые яйца – и тогда из них выведутся дочери, либо оставляя их неоплодотворенными – тогда получатся сыновья. Склонность самки производить на свет дочерей и сыновей в том или ином соотношении определяется отчасти средой, отчасти генами. Влияние среды состоит в том, что самка откладывает больше «мужских» (т. е. неоплодотворенных) яиц, если поблизости откладывают яйца другие самки, а значит, ее сыновьям придется конкурировать не столько друг с другом, сколько с неродственными самцами. Самка клеща, таким образом, модифицирует свою репродуктивную стратегию в зависимости от ожидаемого уровня конкуренции между братьями. Это яркий пример модификационной изменчивости.
   В популяциях паутинных клещей существует также и наследственная (генетически обусловленная) изменчивость по данному признаку, т. е. одни самки от рождения склонны откладывать больше «мужских» (неоплодотворенных) яиц, чем другие. Именно это обстоятельство и позволило использовать клещей для проверки идеи Гамильтона о влиянии родственной конкуренции на эволюцию соотношения полов. У многих других животных наследственной изменчивости по соотношению полов нет или она очень мала: соотношение 1:1 у них слишком жестко «вписано» в саму систему хромосомного определения пола. Например, попытки вывести породу коров, рожающих больше телочек, чем бычков, пока остаются безуспешными – скорее всего, именно по этой причине. За миллион лет необходимые мутации, наверное, накопились бы и у коров, но для эволюционного эксперимента это многовато.
   На основе одной и той же природной популяции паутинных клещей авторы создали девять лабораторных популяций. Первые три популяции в течение 54 поколений выращивали в условиях максимальной конкуренции между братьями: спаривания происходили только между потомками одной и той же самки. Во второй тройке популяций группы спаривания состояли из потомства десяти самок, в третьей – включали потомков 100 самок.
   По завершении эволюционного эксперимента клещи в течение одного поколения жили в стандартных условиях двух типов: откладывая яйца в одиночестве и в группах по 40 самок. Стандартизация необходима, чтобы выявить наследственные (генетические) изменения, возникшие в ходе эксперимента, исключив влияние модификационной изменчивости.
   Затем авторы подсчитали соотношение полов в потомстве самок из разных линий. Были выявлены достоверные различия между тремя линиями по соотношению откладываемых мужских и женских яиц. В популяциях, приспособившихся к острой конкуренции между братьями, самки произвели на свет 23 % сыновей и 77 % дочерей.
   В популяциях из второй тройки сыновей оказалось 45 %, третьей – 50 %. Эти цифры удивительно точно совпадают с теоретическими ожиданиями. По Гамильтону, эволюционно стабильное соотношение полов должно соответствовать формуле (N−1)(2N−1)/N(4N−1), где N – количество самок, чье потомство составляет одну «группу спаривания». Для второй тройки популяций (N = 10) эта формула предсказывает 44 % самцов, для третьей (N = 100) – 49 %. Для первой тройки (N = 1) формула вообще-то предсказывает 0 % самцов, но понимать это следует как «минимальное число самцов, необходимое для оплодотворения всех сестер». Таким образом, эксперимент блестяще подтвердил идею Гамильтона о влиянии конкуренции между братьями на эволюционно стабильное соотношение полов, а заодно и теорию Фишера о том, что при свободном скрещивании соотношение должно стремиться к 1:1.
   

notes

Примечания

1

2

3

4

5

6

7

8

9

10

11

12

13

14

   Биологи пользуются своеобразным жаргоном, в котором отбору как будто приписываются свойства сознательного деятеля. Это может ввести в заблуждение. Не думайте, что биологи и впрямь приписывают отбору (или эволюции) разумность и стремление к какой-то цели. Это не более чем метафорический язык. То же самое можно сформулировать строго научно, но формулировки получатся громоздкие. Например, под фразой «отбор пытается загнать последовательность как можно выше» подразумевается следующее. Если эффективность размножения (приспособленность) последовательности в результате мутации увеличится (такую мутацию называют полезной), то с течением поколений число копий данной последовательности в популяции будет расти по сравнению с другими последовательностями, размножающимися менее эффективно. В итоге мутация зафиксируется (достигнет 100-процентной частоты). Вредные мутации, напротив, будут элиминироваться («отбраковываться»). В результате такого дифференциального размножения последовательностей их приспособленность может постепенно расти, но не может снижаться. Как видим, даже использование термина «естественный отбор» не является обязательным. Ведь естественный отбор – это тоже метафора.

15

16

17

   Не вдаваясь в сложные вычисления, заметим лишь, что число поколений, которое (в среднем) должно пройти до фиксации или элиминации нейтральной мутации, имеет примерно тот же порядок величин, что и численность популяции. Если в популяции несколько тысяч особей, то и ждать придется несколько тысяч поколений, в миллионной популяции речь будет идти о миллионах поколений. Поэтому на судьбу нейтральных мутаций сильное влияние оказывают «бутылочные горлышки» – периоды сокращения численности популяции, во время которых нейтральный аллель может потеряться или зафиксироваться особенно быстро.

18

19

20

21

   Читатели, знакомые с книгой «Рождение сложности», помнят, что этого предка звали Лукой (LUCA – Last Universal Common Ancestor, Последний Универсальный Общий Предок), что он жил свыше 3,5 млрд лет назад и представлял собой, скорее всего, сообщество примитивных микроорганизмов, уже имевших систему синтеза белка (аппараты транскрипции и трансляции, включая рибосомы) и обменивавшихся генами друг с другом. Биологи реконструируют строение Луки, сравнивая гены и белки современных организмов. Мы многого не знаем про Луку, но, как ни странно, нам известны кое-какие подробности из его личной жизни. Мы знаем, например, почти наверняка, что ближайшие потомки Луки разошлись по двум направлениям: одна их часть дала начало надцарству бактерий (Bacteria), а другая – надцарству архей (Archaea). До появления третьего и последнего надцарства – эукариот (Eukarya) – оставалось ждать еще 1,5 или 2 млрд лет.

22

   Об одном из таких исследований мы рассказали в книге «Рождение сложности» в разделе «Пути эволюции предопределены на молекулярном уровне». На примере приспособления бактерий к антибиотикам удалось показать, что эволюция белков – в данном случае речь шла о белке, способном обезвреживать новый антибиотик, – может использовать лишь малую часть из множества теоретически возможных путей достижения цели. Каждая отдельная мутация должна повышать приспособленность, чтобы ее поддержал отбор. При этом положительный или отрицательный эффект многих мутаций, как выяснилось, зависит от того, какие мутации уже успели зафиксироваться ранее. Поэтому приобретение пяти мутаций, позволяющих белку эффективно справиться с новой функцией – защитой от антибиотика, – может идти не в любой последовательности из 120 возможных, а лишь несколькими, как бы «заранее предопределенными» путями (Weinreich et al., 2006).

23

24

25

26

27

   Транскрипционные факторы (ТФ) – белки, регулирующие экспрессию (активность) генов. Каждый ТФ избирательно распознает определенную короткую последовательность нуклеотидов ДНК. Такая последовательность называется сайтом связывания ТФ. Найдя свой сайт связывания, ТФ прикрепляется к нему, что приводит либо к активизации, либо к подавлению транскрипции близлежащего гена. У эукариот в окрестностях большинства генов находится много сайтов связывания ТФ. Посмотрев, что это за сайты, мы можем определить, какими ТФ регулируется активность данного гена. Гены самих ТФ, конечно, тоже имеют сайты связывания и регулируются другими ТФ. На этом основаны генно-регуляторные сети, управляющие важнейшими жизненными процессами, включая развитие организма (онтогенез).

28

   Напомним, что доминантный признак проявляется в фенотипе, если соответствующий генетический вариант (аллель) имеется у данного организма хотя бы в одном экземпляре. Рецессивный аллель проявляется, только когда у организма нет доминантного аллеля того же гена. В случае с устойчивыми бабочками ситуация вполне понятная: при низкой концентрации вирусов для защиты достаточно единственной копии защитного гена (поэтому признак ведет себя как доминантный). При высокой концентрации вирусов вторая копия гена, не обеспечивающая защиты, уже начинает мешать, поэтому признак ведет себя как рецессивный.

29

30

31

32

33

34

35

36

37

38

39

40

   О втором классе коловраток, Bdelloidea (бделлоидных), мы говорили в книге «Рождение сложности». Бделлоидные коловратки – единственный класс многоклеточных животных, полностью отказавшийся от полового размножения и при этом ухитрившийся не вымереть. Другая уникальная особенность этого класса – способность к ГПГ. Как выяснилось, в геномах бделлоидных коловраток полно генов, заимствованных у бактерий, грибов и растений. Не исключено, что возврат к более древнему варианту секса, характерному для одноклеточных, отчасти компенсировал утрату настоящего полового размножения. Возможно, поэтому они и не вымерли.

41

42

43

44

45

46

47

комментариев нет  

Отпишись
Ваш лимит — 2000 букв

Включите отображение картинок в браузере  →