Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

До 1361 года в Англии судопроизводство велось на французском языке.

Еще   [X]

 0 

Секреты радиомастеров (Кашкаров Андрей)

Бесценная книга! В одном практическом руководстве приведены легко выполнимые приемы ремонта электронной техники от настройки телевизионных антенн до ремонта персонального компьютера.

Год издания: 2008

Цена: 69.9 руб.



С книгой «Секреты радиомастеров» также читают:

Предпросмотр книги «Секреты радиомастеров»

Секреты радиомастеров

   Бесценная книга! В одном практическом руководстве приведены легко выполнимые приемы ремонта электронной техники от настройки телевизионных антенн до ремонта персонального компьютера.
   Как устранить неисправность и оптимизировать работу? Почти у каждого настоящего хозяина имеется перечень – на листке бумаги или в памяти – мелких неисправностей в доме, которые необходимо устранить. Большинство из нас дожидаются удобного момента, ищут материалы, выясняют, как устраняется та или иная поломка, и лишь после этого приступают к ремонту. В ваших руках книга, содержащая все необходимые для дела сведения!
   Большое число приведенных практических рекомендаций показывает возможности их использования в различных областях электронной техники. Краткость изложения и тщательно отобранный материал являются достоинством книги и приближают ее по содержанию к полезному справочнику.


Андрей Кашкаров Секреты домашних мастеров

От автора

   Тем же, кто пока робко позиционирует себя как новичок в радиоделе – мой совет таков: бегите, бегите глазами скорее дальше в другие ипостаси и издания, где в заголовках уважаемых авторов так и написано: Радио – начинающим. В моей книге Вы найдете для себя разве что вывод: «Не влезай, убьет!» Для всех остальных читателей, кто чувствует в себе силы не плыть по течению, а искать и находить, изменять и оптимизировать, мечтать и добиваться, адресована эта книга со всеми ее главами и приложениями. Не стану разглагольствовать, что Вы много потеряете, если не дочитаете до конца, но кое‑что несомненно…
   Что касается меня, если Вы читаете эти строки, то сие значит, что один из опытных радиолюбителей решил не ругать всех и вся, безудержно критикуя, а поделиться практическим опытом. Ведь кто знает – может быть именно Вы, дорогой читатель, через несколько лет будете вещать на все страну с широкоэкранных мониторов и модулей, установленных в центрах мегаполисов, а ваше имя будет необратимым образом вписано в историю радиоэлектроники, или же вы станете профессионалом в другой области. Тогда, глядя на вас, я скажу себе: «Ого– го, не прошли таки даром наши с Издателем потуги!»
   Как говорят китайцы, чья продукция видится сегодня в России бесконечной и количественно необъятной – «Путь в тысячу миль начинается с первого шага».
   Начав впервые работу с паяльником, и собирая электронное устройство, рано или поздно, читатель добирается до святая святых – понимания принципа действия электронных компонентов и схемотехники того или иного электронного узла. В каждом из нас живет изобретатель, рационализатор или, по крайней мере, человек, стремящийся к совершенству. Добравшись до электронного узла, где можно самостоятельно что‑то изменить, большинство из нас незамедлительно этим пользуются. Причем женщины – чаще, они ищут лучшее, а мужчины всего лишь новое.
   В этом Вам призвана помочь моя книга.
   Радиотехника и радиоэлектроника рассматриваются как сугубо практические дисциплины, призванные решать бытовые проблемы современного общества.
   Некоторые практические рекомендации, созданные автором много лет назад показали настолько хорошие результаты, что впоследствии были удачно модифицированы, переработаны в соответствии с новейшей элементной базой, для настоящего времени в соответствии с прогрессом, актуальны, и поэтому вошли в данную книгу.
   Читатель вправе (что даже приветствуется автором) отступать от предложенного образца для улучшения результатов опытов, а иногда и применять авторские рекомендации в иных целях.
   В общем, не теряйте связи с автором.
   Конечно, если нужна экстренная помощь, то достаточно набрать с мобильного телефона 112 —искренне желаю, чтобы это не пригодилось вам на практике.
   Сделайте свою работу «умной», комфортной и эффективной!

Глава 1
Рекомендуют специалисты

Как проверить яркость разных осветительных ламп

   В быту люди часто сталкиваются с различными осветительными приборами, большинство из которых работают от сети 220 В и являются лампами накаливания или лампами дневного света (далее – ЛДС). И те и другие выполняют одну и ту же функцию освещения, однако принцип их действия совершенно разный.
   При замене ламп накаливания с перегоревшей спиралью часто ориентируются на ее мощность, предполагая заменить ее аналогичной лампой или ЛДС с такой же мощностью. Однако, если сила света, исходящая от данной лампы накаливания, пропорциональна мощности (значение мощности наносится на колбу или цоколь лампы накаливания), то при замене ламп дневного света, ее мощность не всегда пропорциональна силе света. А значит, и освещенности территории, ведь этот параметр является для людей окончательным и главным результатом эффективности работы ламп. Особенно это касается небольших компактных светильников с ЛДС, которые в быту применяют как локальные подсветки уголков помещения, кладовок, аквариумов и других мест и интерьеров.
   В большинстве светильников с ЛДС применяют ЭПРА (электронные пускорегулирующие аппараты), представляющие собой высокочастотный преобразователь напряжения. Их также называют электронными трансформаторами. Эти устройства являются конкурентами классическим схемам питания ЛДС, содержащими дроссель, конденсатор и стартер. Именно ЭПРА применяются в маломощных бытовых светильниках локальной подсветки различного назначения.
   При неоднократных заменах вышедших из строя ЛДС, в локальных светильниках автор столкнулся с тем, что не все лампы ЛДС (одинаковой мощности, размеров и даже производителя) дают одинаковый световой поток.
   Оценить работу ЭПРА в сочетании с конкретной ЛДС (особенно актуально для локальной подсветки) можно простым способом, описанным ниже.

Простой способ подбора ламп по световому потоку

   Для этого потребуется фоторезистор (фотодиод) и прибор для измерения сопротивления– омметр. Желательно использовать фоторезисторы типа СФ2-2, СФ2-5 (или аналогичные), так как у этих приборов конструктивно большая площадка (окно) рабочей поверхности фоточувствительного элемента. Фоторезистор закрепляют на любом столе неподвижно, примерно на расстоянии 0,5 м от ЛДС (также закрепляют неподвижно в штатном светильнике). К выводам фоторезистора подключают омметр в режиме измерения сопротивления с пределом 100…250 Ом (в зависимости от омметра). Для более точных показаний желательно применять цифровой тестер, например, М830 и его модификации.
   Фиксируют сопротивление фоторезистора при нормальном горении ЛДС (после пускового режима). Затем ЛДС отключают и производят ее замену другой, с аналогичными (заявленными производителем) параметрами. Теперь снова включают ЛДС и замеряют сопротивление фоторезистора. Если оно уменьшилось, значит, сила света и яркость второй лампы больше, и наоборот. Такой результат после подборки с помощью нескольких ЛДС можно считать успешным.
   Этот же метод уместно использовать при самостоятельной настройке (ремонте) ЭПРА. Путем замены элементов в ЭПРА и регулировке его тока по яркости ЛДС можно добиться лучшего результата таким простым «дедовским» методом (без использования осциллографа).
   Иногда можно поэкспериментировать с изменением полярности включения ЛДС, например, бывают частные случаи, когда после этого ЛДС улучшает свои световые характеристики.

Как устранить фон (с частотой 50 Гц) в усилителях ЗЧ

   Усилители звуковой частоты, создаваемые и ремонтируемые радиолюбителями, часто становятся источником «головной боли» из-за возникающего впоследствии фона переменного тока с частотой 50 Гц, заметного на слух в громкоговорителях или телефонах (наушниках).
   Если такое происходит, следует проверить, правильно ли подключен микрофон к (ПУ) предварительному усилителю (общий провод устройства должен быть соединен с оплеткой-экраном шнура), а также – правильно ли подключен выход ПУ и вход усилителя мощности (УМ). Дело в том, что иногда в одном устройстве применяются два усилителя (предварительный и УМ), имеющие разную полярность общего провода. В усилительной схемотехнике такое включение не является проблемой, главное дня качественного усилителя совместимость входного сопротивления и собственный уровень шумов усилителя. Однако, неправильное (некорректное) подключение усилителей между собой и предварительного усилителя к источнику звука (например, к микрофону) зачастую является причиной фона с частотой 50 Гц.

Практическое устранение фона в усилителях ЗЧ

   Центральный проводник в оплетке микрофонного шнура подключается на вход ПУ, как правило, к разделительному конденсатору, ограничительному резистору или делителю напряжения. Оплетка (экран) подключается не к общему проводу напрямую, а последовательно с RC-цепью (параллельно подключенные резистор сопротивлением 2 кОм (±20 %) и оксидный конденсатор емкостью 10 мкФ с таким же допуском по возможному отклонению от номинала). Здесь сопротивление резистора и конденсатора рассчитано для устройств с напряжением источника питания в диапазоне 6—20 В.
   Положительная обкладка оксидного конденсатора в данном случае включается сообразно полюсовке источника питания так, что если общий провод подсоединен к «минусу» источника питания, то оксидный конденсатор подключается к общему проводу отрицательной обкладкой, и наоборот.
   Такой метод позволяет устранить фон в большинстве усилителей с различным общим проводом источника питания, в том числе в старых ламповых усилителях, где фильтрация выпрямленного напряжения оставляет желать лучшего. В большинстве случаев таким способом удавалось решить проблему фона с частотой 50 Гц в динамических головках, возникающую после замены штатного микрофона другим (с близкими электрическими характеристиками), а также в случае замены высокоомного микрофона (например, МД-47, оснащенного согласующим трансформатором и имеющего сопротивление 1600 Ом) на низкоомный микрофон типа МД-201 с сопротивлением катушки 200 Ом или аналогичный по электрическим характеристикам.

Как подобрать пассивные радиоэлектронные компоненты

   Если проанализировать работу в течении 3–5 лет любых аудио– и видеоусилителей, собранных на дискретных компонентах или с применением таковых, окажется, что шумовые помехообразующие свойства данных усилителей (без исключения, самодельного и промышленного производства), в разной степени неудовлетворительны для требовательного слуха меломана или просто внимательного слушателя, привыкшего к комфорту.
   Одним из основных требований, предъявляемым к усилителям, является минимальный шум на выходе. В паспортных данных промышленно изготовленного усилителя, как правило, поставленного на конвейерную сборку, присутствует такой параметр, как отношение сигнал/шум. Чем ниже этот показатель – тем качественнее усилитель. Наверное, радиолюбители замечали, что сразу после приобретения нового усилителя среднего класса А или В, его шумовые характеристики практически удовлетворительны, то есть в динамических головках трудно зафиксировать на слух шум самого усилителя. В процессе эксплуатации этот параметр постепенно ухудшается и вот уже на полной громкости усилителя слышен то ли «шум камыша», то ли иной постоянный шорох.
   Как правило, бывший в ремонте усилитель имеет худшие качественные параметры, относительно нового. Объяснений тому может быть несколько – от установки в виде замены тех элементов, что есть в наличие, а не тех, которые необходимы по заданным параметрам (это касается всех радиоэлементов) и целым комплексом других причин. После повторной пайки, усилители (как показывает практика), начинают больше шуметь даже с установленными высококачественными элементами. Основное усиление в усилителях прямого преобразования осуществляется на низких частотах. Поэтому особо важно при сборке усилителя применять те компоненты, которые впоследствии дадут меньше шумовых эффектов.

Источники шумов

   По источнику возникновения шумы усилителей можно разделить на внешние и внутренние. С помехами и наводками, вызванными внешними причинами, можно успешно бороться известными способами – с помощью оптимального расположения элементов, экранирования корпуса устройства, фильтрами и фильтрующими оксидными конденсаторами по питанию. От внутренних шумов, возникающих в процессе усиления сигнала, избавиться не просто. Внутренние шумы усилителя зависят от схемотехники усилителя (совмести транзисторов и целых каскадов), и возникают при прохождении тока через пассивные (резисторы, катушки индуктивности и конденсаторы) и активные (транзисторы) элементы схемы.
   При разработке или повторении высококачественного усилителя звуковой частоты, кроме оптимального выбора вида схемы, важно правильно подобрать элементную базу и оптимизировать режим работы каскадов усилителя.
   В каждом усилителе источником внутренних шумов являются тепловые и токовые шумы постоянных и переменных резисторов, фликкер-шумы конденсаторов, диодов и стабилитронов, флуктуационные шумы активных элементов, вибрационные и контактные шумы.
   Контактные шумы возникают при некачественной пайке (произведенной с нарушением температурного режима), в местах соединения разъемов и отслоений контактных площадок печатного монтажа. Количество всевозможных разъемов в усилительной аппаратуре должно быть сведено к минимуму. Вибрационные шумы – это разновидность контактных шумов. Они могут проявляться при эксплуатации усилителя на подвижных объектах, с вибрацией почвы (основания), в автомобиле и при неоправданно близком расположении мощных динамических головок к конструкции усилителя. Такие шумы возникают из-за передачи механических колебаний на обкладки конденсаторов, на которые воздействует приложенное напряжение. Особенно подвержены данному недостатку керамические конденсаторы (К10, К15 и другие) с емкостью более 0,01 мкФ, установленные во входных цепях усилителя, и выполняющие роль разделительных. Спектр помехи находится в диапазоне низких частот. Для борьбы с этим явлением желательно применять амортизацию всей конструкции. В оксидных конденсаторах такие помехи не возникают.
   Например, звуковой эффект эхо-сигнала – когда в динамических головках (учитывая стереоэффект) отчетливо слышно повторение сигнала. Для некоторых меломанов такой эффект даже приятен и необычен, но по сути это является недостатком усилителя, хотя бы потому, что его невозможно выключить (устранить).
   При прямом прохождении тока собственные шумы диодов минимальны. Небольшой уровень шумов все же имеет место быть – при действии обратного напряжения образуется ток утечки, и чем он меньше – тем меньше шумовые свойства прибора. Стабилитроны и стабисторы дают больший шумовой эффект (с помощью таких полупроводников даже строят устройства со специальными эффектами – имитаторами шума прибоя, генераторы «белого» и «розового» шума). Чем большее сопротивление имеет ограничительный резистор в цепи стабилитрона (работа на малых токах), тем больше вероятность проявления внутренних шумов стабилитрона.
   Рассмотрим шумы, возникающие от пассивных элементов: резисторов и конденсаторов.

Шумы резисторов

   Если на резистор не действует напряжение, то ЭДС его шумов (мкВ) определяется соотношением:

   ЕШ= 0,0125 × (f1 – f2)R,
   где (f1 – f2) – полоса частот, кГц; R — сопротивление, кОм.

   При протекании через резистор тока возникают токовые шумы. Шумовое напряжение появляется из-за эффекта флуктуации контактных сопротивлений между проводниками, оно линейно зависит от приложенного напряжения.
   Шумовые свойства резисторов характеризуются отношением действующего значения переменной составляющей напряжения шумов (мкВ) к приложенному напряжению (В): Еm/U.
   Частотный спектр тепловых и токовых шумов непрерывный, но есть и различия. У теплового шума он равномерно распределен по всей полосе частот, а у токового шума спадает с примерно 10 МГц. Общая величина шума пропорциональна квадратному корню сопротивления, поэтому у резисторов с низким сопротивлением шумовые качества менее значимы. Кроме того, определяющее значение имеет материал, из которого изготовлены резисторы.
   Есть несколько способов борьбы с шумами резисторов. Применение тех типов резисторов, в которых за счет технологии изготовления шумовые свойства менее значимы. У непроволочных резисторов токовые шумы значительно больше тепловых. Общий уровень шума для разных типов резисторов находится в диапазоне 0, 1-100 мкВ/В.
   Подстроечные и переменные резисторы шумят больше постоянных, поэтому их лучше применять с небольшими номиналами или вообще исключить. Тепловые шумы можно значительно сократить, если применять резистор большей мощности рассеяния, чем это технологически требуется.
   Тот же эффект достигается принудительным охлаждением резисторов, например, с помощью установленного непосредственно рядом с элементами вентилятора, или помещением всей монтажной платы в холодильник. Параллельное или последовательное включение резисторов для этой цели дает ощутимо меньший эффект, так как возрастает количество контактных соединений, что приводит к увеличению влияния контактных шумов.
   Для сравнения шумовых свойств некоторых популярных резисторов обратимся к табл. 1.

   Таблица 1
   Шумовые свойства некоторых резисторов


   Из табл. 1 видно, что наиболее эффективно использовать в высококачественном малошумящем усилителе звуковой частоты резисторы типов С2-26, С2-29В, С2-33 и резисторы в чип-исполнении (бескорпусные) С1-4. Как наиболее шумовые из популярных резисторов, кроме переменных и подстроечных, показали себя популярные и распространенные типы MЛT, OMЛT.
   Резисторы, применяемые в колебательных контурах, усилителях высокой частоты должны обладать только активным сопротивлением, то есть не изменять свое сопротивление в рабочем диапазоне частот. Пограничная частота, на которой будет эффективно работать резистор, зависит от его сопротивления и собственной емкости и определяется соотношением FГР = 1/4RC.
   Собственные емкости резисторов С2-6, С2-13, С2-14, С2-23, С2-33, OMЛT находятся в интервале 0,1–1,1 пФ. Постоянные резисторы имеют допуск отклонения сопротивления от номинальной величины. Здесь важно понимать, что чем больше допустимый разброс в отклонении от номинального сопротивления резистора – тем менее стабильной может оказаться его работа. В усилителях желательно применить постоянные резисторы с допуском отклонения 0,001…2 % марки С2-23. Допуск в отечественных резисторах обозначается третьим или четвертым элементом в маркировке.
   В табл. 2 приводятся обозначения допусков постоянных резисторах отечественного производства.

   Таблица 2
   Маркировка постоянного резистора, обозначающая величину допуска, %


   Величина допуска может быть нанесена и под номиналом, во второй строке. Что касается резисторов, на которых маркировка читается в виде цветных полос, то для нашего случая это еще проще – постоянные резисторы с малой величиной допуска (0,1… 10 %) маркируются пятью цветовыми кольцами на корпусе прибора. При этом первые три – численная величина сопротивления в Омах, четвертое кольцо – множитель, а пятое – допуск. Для нашего варианта пятая полоса должна иметь цвет: золотистый (±5 %), коричневый (±1 %), красный (±2 %), зеленый (+0,5 %), голубой (+0,25 %), фиолетовый (+0,1 %). Резисторы с более широким допуском маркируются четырьмя полосами.
   Маркировочные знаки на резисторах сдвинуты к одному из выводов и читаются слева направо. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, ширина полосы первого знака делается несколько больше других. Современные резисторы маркируются по ОСТ 11.074.009—98.

Маркировка резисторов

   Второй элемент – группа по материалу изготовления. 1 – непроволочные, 2 – проволочные или металлофольговые.
   Третий элемент – цифра, обозначающая регистрационный номер разработки. Между вторым и третьим элементом ставится дефис, например, Р1-4. Кроме того, четвертым обозначением (не всегда) ставится климатическое исполнение, что важно для высококачественных усилителей. В – всеклиматическое, Т – тропическое исполнение. Совершенно естественно, что в относительно жарком климате надежней резистор исполнения «Т».
   По классификации до 1980 г. обозначение отечественных постоянных резисторов начиналось с буквы «С» – сопротивления (СП – переменные резисторы). Вторая цифра указывает на особенности токонесущей части: 1 – непроволочные тонкослойные углеродистые и бороуглеродистые; 2 – непроволочные тонкослойные металлодиэлектрические или металлоокисные; 3 – непроволочные композиционные пленочные; 4 – непроволочные композиционные объемные; 5 – проволочные; 6 – непроволочные тонкослойные металлизированные.
   Единая структура условных обозначений всех резисторов, выпускаемых за рубежом, отсутствует. Поэтому каждая уважающая себя фирма обозначает резисторы по своему стандарту. Чтобы перечислить все возможные обозначения (особо важен материал резистора и технология изготовления) потребовалось бы опубликовать несколько книг.
   То же справедливо относительно цветовой маркировки зарубежных резисторов. Поэтому в данной книге отмечу лишь один зарубежный стандарт обозначения (MIT). Первый элемент обозначает серию резистора. Второй, третий, четвертый и пятый элементы – цифровой код, номинальное сопротивление. Эти данные сведены в табл. 3.

   Таблица 3
   Стандарт обозначения зарубежных резисторов MIL


   Шестой элемент – буквенный код, которым обозначается уровень надежности резисторов в течении 1000 часов. Обратите внимание на табл. 4.

   Таблица 4
   Уровень надежности резисторов в течении 1000 часов


   В последняя время пользуются популярностью металлопленочные резисторы MF.
   Материал основы – особо чистая керамика, резистивный слой – осажденный Ni‑Cr сплав. Выводы таких резисторов из луженной меди. Температурный диапазон —55…+155 °C. Температурный коэффициент сопротивления ±15…±50 ppm/°С. Выпускаются с мощностью рассеяния 0,125—3 Вт. особо малогабаритные варианты данного типа постоянных резисторов маркируются MF‑S. Точность сопротивления (допуск отклонения) в пределах 0, 1–5 %, что позволяет использовать их в высококачественных усилителях. Точность сопротивления и другие электрические параметры маркируются цветовыми полосами так, как рассмотрено выше.
   Еще один вариант подходящих постоянных резисторов для высококачественных усилителей звуковой частоты – металлооксидные резисторы МО. Основа та же. Резистивный слой – металлооксидная пленка дает название самому типу данных резисторов. Кроме отличий по электрическим характеристикам данный тип резисторов имеет огнеупорное покрытие, что позволяет строить на их основе устройства, работающие с высоким уровнем температуры воздуха, например, пожарной сигнализации.
   Малогабаритные варианты маркируются MO‑S. Мощность рассеяния до 5 Вт при температуре +70 °C. Температурный коэффициент сопротивление чуть хуже: ±200 ppm/°С. Точность сопротивления (допуск) также уступают постоянным резисторам серии MF – только ±5 %. Температурный диапазон —55…+200 °C.
   Постоянные резисторы серий KNP (проволочные резисторы), а также SQP и PRW (мощные проволочные резисторы с высокой перегрузочной способностью, закатанные в литой цементный корпус) для работы в высококачественном усилителе нежелательны из-за комплекса причин, одной из которых является чрезмерно нестабильный (для усилителей класса А) их температурный коэффициент сопротивления ±300 ppm/°С.

Шумы конденсаторов

   Замечено, что утечка увеличивается с увеличением емкости и снижается с увеличением допустимого рабочего напряжения UРАБ. Оксидные конденсаторы, установленные на входе и выходе усилителя в качестве разделительных (не пропускают постоянную составляющую напряжения и уменьшают влияние нагрузки или выходных каскадов предварительного усилителя на работу основного усилителя) существенно увеличивают внутренние шумы усилителя.
   Поэтому, желательно вместо них применять пленочные конденсаторы (например, К10-17, К10-28, К10-23, КТ4-23, К73-3, К73-9, К73-17, К76-3, К10У-5, КД-1, К76-П2, КМ-5, КМ-6, из импортных – KWC), хотя это, во-первых, приведет к существенному увеличению размеров конструкции, а во-вторых, выходные конденсаторы таким образом заменить не удастся из-за относительно больших емкостей.
   Оксидные конденсаторы вообще являются значительным источником фликкер-шумов, которые образуются в усилителе с течением времени. По этой же причине желательно избегать их применения в цепях прохождения сигнала.
   В табл. 5 сведены данные о некоторых популярных оксидных конденсаторах, изучив которые можно определить те или иные прерогативы в использовании данных конденсаторов. Наименьшие токи утечки среди оксидных конденсаторов имеют К53-1А, К53-18, К53-16, К52-18, К53-4.

   Таблица 5
   Справочные данные некоторых конденсаторов


   При выборе компонентов для высококачественного усилителя необходимо принимать во внимание, кроме электрических параметров, срок изготовления и фирму– производителя. Как правило, производитель гарантирует паспортные параметры в течение ограниченного срока 3–8 лет. При длительном периоде хранения оксидных конденсаторов до введения их в рабочий режим, их токи утечки заметно возрастают.
   Учитывая это, при использовании долгое время хранившихся на консервации конденсаторов необходимо постепенно повышать воздействующее на них напряжение до указанного в паспортных данных номинального значения. Так как токи утечки конденсатора возрастают при увеличении температуры, следует хранить конденсаторы в недоступном для прямых солнечных лучей месте, при температуре окружающей среды в диапазоне —40…+40 °C. Для того, чтобы подбирать конденсаторы для той или иной радиоэлектронной аппаратуры необходимо знать их обозначения и сведения, определяющие их электрические параметры, такие как емкость, рабочее напряжение, материал изготовления, группу ТКЕ (температурного коэффициента емкости).
   Обозначения отечественных конденсаторов в соответствии с ОСТ 11.074.008.98 (действует с 1998 г.) следующие.

Обозначения конденсаторов

   Второй элемент — используемый вид материала (диэлектрика). Далее некоторые сведения, относящиеся к конденсаторам, применяемым в усилителях различного назначения:
   10 – керамические;
   20 – кварцевые;
   21 – стеклянные;
   22 – стеклокерамические;
   23 – стеклоэмалевые;
   26 – тонкопленочные с неорганическим диэлектриком;
   31, 32 – слюдяные;
   40 – бумажные и фольговые;
   42 – бумажные металлизированные;
   50 – оксидные (электролитические) алюминиевые;
   51 – оксидные танталовые и ниобиевые;
   52 – оксидные танталовые объемопористые;
   53 – оксидно-полупроводниковые;
   58 – с двойным электрическим слоем, они же ионисторы;
   60 – воздушные;
   61 – вакуумные;
   70 – полистирольные с металлизированными обкладками;
   72 – второпластовые;
   73, 74 – полиэтилентерефталатные.

   Ионисторы – особые конденсаторы. Несколько слов об ионисторах. Это оксидные конденсаторы большой общей емкости (в несколько десятков и сотен Фарад, рассчитанные на рабочее напряжение 10–50 В). В современных усилителях применение ионисторов оправдано в качестве фильтрующих элементов по питанию. Эквивалент электрической схемы ионистора в последовательном соединении (в прямом направлении) кремниевого диода, ограничительного резистора, конденсатора большой емкости (отрицательная обкладка подключена к общему проводу) и параллельно ему RНАГР. Как примеры ионисторов – распространенные приборы К58-3 и К58-9.

   Третий элемент в обозначении конденсатора – порядковый номер разработки (П – для работы в цепях постоянного и переменного тока, Ч – для работы в цепях переменного тока, У – для работы в цепях переменного тока и в импульсных режимах, И – для работы в импульсных режимах).
   Из старых типов, которые еще можно встретить в усилителях выпуска 1980–1990 гг. встречаются обозначения: КД – конденсаторы дисковые, КМ – конденсаторы керамические монолитные, KЛC – керамические литые секционные, КСО – конденсаторы слюдяные спресованные, СГМ – слюдяные герметизированные малогабаритные, КБГИ – бумажные герметизированные изолированные, МБГЧ – металлобумажные герметизированные высокочастотные, КЭГ – электролитические герметизированные, ЭТО – электролитические танталовые объемно-пористые. Типы (КД, KЛC, КСО, КГМ, КБГИ, МБГЧ, КЭГ) в усилителях желательно не применять по причине их иного предназначения и повышенным внутренним шумам.
   Конденсаторы, как и постоянные резисторы, разделяются по группам допуска отклонения от номинальной емкости. Эти данные сведены в табл. 6.

   Таблица 6
   Буквенное обозначение допуска конденсаторов постоянной емкости


   В табл. 7 представлены данные буквенного обозначения напряжения (маркировки) на конденсаторах.

   Таблица 7
   Буквенное обозначение номинального напряжения для конденсаторов


   Малогабаритные конденсаторы с малой величиной допуска (0,001… 10 %), рекомендуемые к применению в высококачественных усилителях, маркируются шестью цветовыми кольцами на корпусе. Первые три кольца – численная величина емкости в пФ, четвертое кольцо – множитель, пятое – допуск, шестое – ТКЕ.
   Температурный коэффициент емкости (ТКЕ) характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Буквенное обозначение ТКЕ может быть: М – отрицательное, П – положительное, МП – близким к нулю, Н – не нормируется. Следующие за буквой Н цифры определяют допустимые изменения емкости в интервале рабочих температур. У слюдяных конденсаторов ТКЕ обозначен первой буквой на корпусе, у керамических‑каждой группе соответствует определенный цвет корпуса или цветовая точка на корпусе. В усилителях керамические конденсаторы группы «Н» по ТКЕ применяют в качестве шунтирующих, фильтровых элементов и для связи между каскадами на низкой частоте сигнала. Как и любые проводники, конденсаторы обладают некоторой индуктивностью. Чем больше емкость и размеры обкладок конденсаторов, тем больше паразитная индуктивность.
   Зарубежные производители конденсаторов не имеют единой системы обозначения своих приборов. Конденсаторы малой емкости используются в усилительной технике в качестве разделительных между каскадами усилителя. Не желательно для этой цели применять лакопленочные, пленочные, металлопленочные и однослойные металлобумажные конденсаторы, так как при эксплуатации на малых (менее 1 В) напряжениях у данных типов наблюдается нестабильность сопротивления изоляции.

Выбор оксидного конденсатора для электронного устройства

   При выборе оксидного конденсатора для выходных каскадов УЗЧ необходимо стремиться к тому, чтобы ток утечки не превышал значения 0,1 мА/1 мкФ. Рабочее напряжение такого конденсатора должно в два раза превышать максимальное расчетное напряжение в действующей цепи. Подача напряжения обратной полярности недопустима. Несоблюдение полярности алюминиевых оксидных конденсаторов (К50-29, К50-20, К50-24, К50-35 и аналогичные) приводит к короткому замыканию цепи и нередко заканчивается взрывом конденсатора, если он находится под напряжением. Для предотвращения несчастных случаев, которые возможны при несоблюдении полярности конденсатора, желательно использовать конденсаторы с предохранительными отверстиями на корпусе. В цепях с переменной полярностью желательно использовать керамические неполярные конденсаторы.
   При эксплуатации оксидных конденсаторов в качестве разделительных при малых напряжениях, учитывают наличие у них собственной ЭДС, с действующим значением до 1 В. Это значение может совпадать или не совпадать с полярностью конденсатора. Оксидные конденсаторы типов К50-26, К50-20, могут изменять полярность на противоположную с течением времени. Это вносит в работу усилителя некачественные (нежелательные) изменения, влияющие на шумы, передачу сигналов между каскадами и в целом на нормальную работу устройства. Танталовые конденсаторы типа К52-2, К52-5, ЭТО и другие при встречном включении (как неполярные) допускают работу в цепях переменного тока с частотой до 20 кГц при действующем значении напряжения до 3 В.
   Не допускайте, чтобы оксидный конденсатор находился под напряжением, превышающем, его рабочее напряжение (допустимо только кратковременное перенапряжение, несколько сек). При прохождении через конденсатор импульсного тока обращают внимание на максимальное напряжение на конденсаторе (сумма постоянного напряжения и напряжения пульсаций – если конденсатор включен в электрическую цепь как сглаживающий пульсации фильтр), чтобы оно не превышало номинального значения. В противном случае, этот приводит к преждевременному отклонению электрических характеристик конденсаторов (особенно оксидных) от номинальных. Например, оксидный алюминиевый конденсатор К50-24 рассчитан на работу в течении 2000 часов. После этого времени предприятие изготовитель не гарантирует сохранение номинальной емкости, тока утечки и прочих важных параметров. 2000 часов – это примерно 83 суток. Естественно, что для высококачественного усилителя нежелательно использовать такого рода конденсаторы. Практикой установлено, что эксплуатируемые при комнатной температуре усилители и приборы имеют более долговременную историю стабильной и эффективной работы, чем те, которые используется при разных (в том числе отрицательных температурах окружающей среды).
   Это объясняется тем, что рабочий температурный диапазон широко популярных оксидных конденсаторов «привязан» к температуре +10…+70 °C. Использование конденсатора при комнатной температуре гарантирует длительный срок его полезной службы. Сумма постоянного обратного напряжения и амплитуды пульсаций не должна превышать значение 2 В.
   Для каждой серии современных конденсаторов указывается максимальное значение тангенса угла потерь (tg 5), которое, как правило, измеряется на частоте сигнала 120 Гц при температуре окружающей среды +20 °C. Отсюда вычисляется эквивалентное последовательное сопротивление (ESR) по формуле
   ESR = tgδ/2pfC,
   где f – частота, при которой производились измерения, Гц; С – емкость конденсатора, Ф.
   В электрических цепях, где процесс заряда-разряда происходит с высокой частотой, значение емкости (по определению конденсатора) может уменьшаться. Если через конденсатор протекает импульсный ток, значение которого превышает номинальное значение тока конденсатора, то на конденсаторе выделяется избыточное тепло (его можно зафиксировать «невооруженными» руками, прикосновением) его емкость уменьшается, срок службы сокращается.
   Во время пайки дискретных и чип-элементов необходимо соблюдение осторожности. Температура пайки выводов конденсаторов не должна превышать 260 °C, а контакт с жалом паяльника не более 5–7 с.
   Допустимый ток пульсации для оксидного электролитического конденсатора необходимо учитывать (он указывается персонально для каждой серии) для использования таких конденсаторов в качестве фильтрующих элементов в источниках питания мощных усилителей. Сумма постоянного напряжения на обкладках конденсатора и напряжения пульсации не должна превышать номинального рабочего напряжения. Номинально допустимые параметры определяются при окружающей температуре +85 °C и на частоте сигнала 120 Гц. При другой температуре окружающей среды и другой частоте сигнала, в качестве максимально допустимого тока пульсации применяется значение тока пульсации, умноженное на коэффициент в табл. 8 и табл. 9.

   Таблица 8
   Расчет тока пульсации оксидных конденсаторов в зависимости от температуры

   Таблица 9
   Расчет тока пульсации оксидных конденсаторов в зависимости от частоты действующего сигнала


   Представленные данные подтверждены многолетней практикой ремонта усилителей и справочниками.

Перспектива развития пассивных радиокомпонентов

   Электронные компоненты на основе так называемых «твердых элементов» в недалеком будущем начнут вытеснять традиционные, производимые на основе сегодняшних технологий. Японские и американские технологи почти одновременно получили особый «твердый электролит», созданный из порошковой смеси различных металлов и специальных полимеров, модификации которого применяют в гальванических элементах и оксидных конденсаторах (ионисторах) сверхбольших емкостей. Гальванический элемент из такого материала при толщине 1 микрон дает напряжение до 0,5 В. Батарея из таких элементов толщиной 0,1 мм и площадью два квадратных сантиметра дает напряжение до 70 В.
   Не менее интересно применение «твердых электролитов» для производства новых типов конденсаторов, удельная емкость которых в тысячи раз превзойдет существующие. Электронным компонентам, созданным по новой технологии, можно придавать любую геометрическую форму, что позволит «вписывать» их в печатные платы, а также размещать их поверх других компонентов, увеличивая в десятки раз плотность монтажа. Серийный выпуск батарей и конденсаторов нового типа уже начался.

Как выбрать для дома СВЧ печь

   СВЧ печь является ощутимым подспорьем на кухне, дополняя работу плиты, а зачастую даже в чем‑то заменяя ее. Для многих, кто покупает микроволновую печь, как дополнительный прибор для размораживания продуктов и подогревания блюд, она очень быстро становится основным средством для приготовления пищи. СВЧ печь не создает характерной кухонной атмосферы с духотой, жаром и запахами готовки. Причем в течение всего цикла приготовления можно при желании открывать дверцу, перемешивать, добавлять ингредиенты, проверять готовность. И все это без опасений потери тепла и нарушения режима приготовления.
   У микроволновых печей высокий коэффициент полезного действия: практически вся электроэнергия идет на приготовление пищи, а не нагревание кухни.
   На какие характеристики стоит обращать внимание при покупке микроволновой печи?

Размеры и объем

   Следующий момент, непосредственно связанный с объемом печи – ее размеры. Если кухня чрезвычайно мала, и очень хочется иметь СВЧ печь, обратите внимание на печи небольших размеров. С другой стороны, если размеры кухни позволяют, вы часто принимаете гостей или семья достаточно велика‑как раз подойдут самые большие печи.

Особенности

   Дальше попробуйте определить, для каких целей вы покупаете микроволновую печь. Если просто для разогрева пищи и быстрой разморозки продуктов, то вполне достаточно, чтобы печь имела только один режим «микроволновый» – СВЧ. Это подойдет тем, у кого гриль и конвекция присутствуют в плите, а печь вы покупаете лишь для вспомогательных действий. Кроме того, есть просто любители блюд, приготовленных в микроволновой печи. К тому же приготовление блюд в СВЧ печи занимает значительно меньше времени. Для тех, кто хочет печь пироги и пирожные, рекомендую приобрести печь с конвекцией. Встроенный вентилятор равномерно распределяет горячий воздух, помогая пропечь тесто. Еще один довод в пользу таких печей состоит в том, что сочетание микроволн и конвекции ускоряет процесс приготовления.
   Для любителей приготовленных на гриле блюд выпускаются печи с грилем. При выборе такой печи важно помнить, что грили бывают разные, а именно «кварцевые» или «тэновые» – соответственно по принципу нагрева камеры.
   Преимущества кварцевого гриля:
   • быстрее набирает рабочую мощность;
   • занимает меньше места внутри рабочего пространства;
   • проще в очистке.
   Преимущества тэнового гриля:
   • может менять свое положение в зависимости от формы продукта (подниматься, опускаться, наклоняться или устанавливаться вдоль задней стенки);
   • печки с этим типом гриля дешевле.

Мощность микроволн

   • 80—150 Вт – режим поддержания готового блюда в горячем состоянии;
   • 160–300 Вт – размораживание и приготовление «деликатных» продуктов;
   • 400–500 Вт – быстрое размораживание в небольших количествах;
   • 560–700 Вт – медленное приготовление или разогрев «деликатных» продуктов;
   • 800—1200 Вт – быстрый разогрев и приготовление.
   Бытует мнение, что мясо и птица в СВЧ печи получаются более жесткими, чем при традиционном приготовлении. Но если и на обычной плите вы будете готовить мясо или птицу при максимальном нагреве до самого конца, вы тем более получите «подошву». Ошибка в том, что владельцы СВЧ печей ограничиваются установкой времени приготовления, а мощность (если ее не установить специально) выдается 100 %. На практике 100 % мощность используется не часто. Мясо, птицу лучше готовить при 70 % мощности, рыбу, пельмени, тефтели – при 50–70 %. Причем мясо с прожилками жира прогревается заметно быстрее. А жесткую говядину или баранину лучше тушить на мощности 50 %, порезав мелкими кусочками.
   Заваривание лекарственных трав хорошо удается, если залить их кипятком и выдержать в «микроволновке» 10–15 мин при мощности 10–30 %.
   А если вы хотите быстро приготовить дрожжевое тесто, рекомендую поместить его в камеру СВЧ печи, отрегулировав мощность 10 %.

Витамины в СВЧ печи

   В блюдах из микроволновой печи витаминов сохраняется намного больше, чем при традиционной готовке на плите. Институт питания Академии наук РФ провел экспертизу приготовленной в микроволновой печи еды. Проверялся уровень сохранения витаминов во время приготовления овощных и мясных блюд. Результат превзошел все ожидания: самый ценный витамин С сохранился после обработки в печи на 75–98 % (каждому виду продуктов соответствуют свои цифры). А при традиционных способах приготовления сохранность витаминов не превышает 38–60 %.

Оптимальное управление СВЧ печью

   Особенности механической панели управления:
   • простота эксплуатации;
   • надежность;
   • меньше шансов, что включит ребенок.
   Особенности кнопочной (электронно-механической)
   панели управления:
   • удобна в эксплуатации, возможность программирования;
   • красивый внешний вид.
   Особенности сенсорной панели управления:
   • приятный внешний вид;
   • большие возможностей при установке исходных значений (возможность программирования процесса приготовления).
   Многие модели имеют встроенные рецепты приготовления, например, наиболее часто используемые рецепты блюд запрограммированы. Для того чтобы запустить процесс приготовления достаточно указать вид продукта, его количество и выбрать рецепт. Количество рецептов отличается у разных моделей (как правило, 4–8). В некоторых моделях количество встроенных рецептов достигает нескольких десятков. Использование готовых программ приготовления дает возможность выбрать оптимальный режим и точное время тепловой обработки продуктов, необходимое для приготовления именно данного блюда.

Очистка печи

   Важным моментом для СВЧ печи является внутреннее покрытие стенок. Чаще всего встречается внутреннее покрытие печей из особой прочной эмали, которую легко содержать в чистоте. Все большее распространение получает внутреннее покрытие из керамики. Оно очень прочное, его трудно поцарапать, и оно такое гладкое, что частички жира и другие загрязнения с трудом удерживаются на этой гладкой поверхности. В противном случае они без труда смываются мягкой губкой.
   Покрытие из нержавеющей стали прочное, красивое, выдерживает любые температуры, что очень важно в грилевом и конвекционном режимах. Правда, ухаживать за таким покрытием и поддерживать его чистый блеск несколько сложнее. Часто в дешевых моделях камеры просто окрашены «под эмаль». И этот вариант имеет право на существование.
   Покрытие нормально держится, если готовить блюда, не требующие высоких температур и слишком большого времени. Случайное или намеренное нарушение целостности внутреннего покрытия рабочей камеры сразу даст о себе знать – увеличится потребляемая мощность (уменьшится КПД СВЧ-генератора – магнетрона) и увеличится акустический шум.
   Причем впоследствии устранить уже образовавшийся шум при работе СВЧ печи не удастся – он будет предательски выдавать дефект.

Посуда для микроволновых печей

   Можно использовать то, что уже есть дома: обычный фарфор, фаянс, терракоту, керамику. Важно только, чтобы на вашей посуде не было золотых и серебряных ободков и узоров, поскольку эти содержащие металл краски электропроводны и могут вызывать слабые электрические разряды. В микроволновой печи можно готовить даже в бумажных стаканчиках (так называемые быстрые супы), разогревать готовые не жидкие продукты в бумажных пакетах или завернутыми в салфетки, бумажные полотенца, вощеную бумагу.
   Не пытайтесь подогревать в микроволновке консервы – на практике такие случаи нередкость – металлическая основа (банка) консервов, находясь внутри излучающего СВЧ-колебания с частотой 9—12 ГГц генератора, является центром магнитной индукции, отвлекая на себя (замыкая) магнитное поле. В результате такого эксперимента велика вероятность выхода из строя магнетрона СВЧ печи или изменение ее нормальной работы.

Инверторные печи – лучшие

Как стимулировать рост домашних цветов

   Возбуждение у растения (в том числе на садовом участке) собственного мембранного процесса (осмоса) является важным моментом в растениеводстве, садоводстве или даже в обычной квартире, где хозяйка содержит комнатные цветы. Кстати, к комнатным цветам относятся не только фиалки или столетник, но и драцена, пальма, лимон, и многие другие (которые в домашних условиях, выращивают, без преувеличения, до потолка). Автору удалось вырастить дома в обычной городской квартире с помощью предлагаемого метода из желудя даже дуб – он был пересажен на садовый участок, когда ствол достиг длины 1,3 м.
   Рост разных растений в домашних условиях не одинаков и своеобразен. Некоторые из них активно растут только летом, а зимой едва подают признаки жизни. Другие растут вне зависимости от времени года, но могут погибнуть внезапно. Причиной тому может служить не столько проблема окружающей среды, питание растения или температура воздуха, сколько отсутствие времени хозяев на должный уход за теми «кого мы приручили». В связи с этим архиважно «выходить» погибающее, затухающее растение, дать ему импульс к новой жизни.
   «Реанимация» не подающего длительное время признаков жизни растения производится с помощью воздействия на растение током около 50 мА от одной пальчиковой батарейки типа АА.
   Например, комнатный цветок «широколистник» длительное время оставался безнадежно болен, то есть был в состоянии «ни жив, ни мертв». Жизнь его продолжалась, что было заметно по упругому стволу и зеленеющей верхушке, но ни листьев, ни роста ствола не происходило в течении двух лет (после того, как последние листья опали и рост растения внезапно прекратился). После воздействия электрическим током силой 46–60 мА в течение 48 ч непрерывно, на вторые сутки эксперимента стали заметны новые развивающиеся листочки. Это хорошо видно на фото рис. 1 вверху ствола «широколистника».

   Рис. 1. Фото результата эксперимента по предлагаемому методу на вторые сутки воздействия слабым электрическим током

Описание эксперимента

   Последовательно включен постоянный резистор MЛT-0,25 сопротивлением 33 Ом. К верхушке растения подключен зажим типа «крокодил» с отрицательным полюсом батареи (хорошо видно на рис. 1). В качестве элемента питания можно использовать и сетевой источник питания с понижающим трансформатором, с выходным напряжением 1,5–3 В.
   Кроме того, есть и другой метод, основанный не столько на постоянном возбуждении осмоса растения (через непосредственное воздействие на него постоянного тока слабой силы), сколько на периодическое воздействие на стебли и листья растения.
   Ниже описана электрическая схема сенсорного устройства, совмещенного с триггером (устройством с двумя устойчивыми состояниями), а управляемым узлом в этой схеме является лампа освещения настенного светильника-бра. Электрическая схема устройства представлена на рис. 2.

   Рис. 2. Электрическая схема сенсорного устройства с триггером

   Отличительная черта устройства в том, что оно является составной частью домашнего освещения и реагирует на прикосновения к горшку, стволу растения или его листья (что само по себе необычно), а также в том, что косвенно оно (с помощью воздействия слабого электрического тока) способствует активному росту растений.
   Особенность устройства в использовании сенсора. Здесь сенсорный контакт Е1 подключен к металлическому штырю (в качестве которого используется спица для вязания), который, в свою очередь) воткнут в землю цветочного горшка. Сенсорный контакт Е2 аналогичным образом расположен в другом цветочном горшке. Принцип работы устройства прост. При касании рукой человека стебля или листьев (земли в горшке) цветка чувствительный сенсор срабатывает, и включается освещение. Оно будет включено до тех пор, пока в осветительной сети присутствует напряжение 220 В и пока не будет прикосновения к горшку, цветку или почве, куда помещен сенсор Е2. После воздействия на Е2 свет выключится. На рис. 2 внизу показано включение лампы освещения с помощью контактов реле.
   Устройство безопасно в эксплуатации и нормально работает у меня дома уже в течение 7 лет, радуя глаз и создавая необычную атмосферу праздника и чудес. Главное, чтобы источник питания применялся с понижающим трансформатором. Внешний вид устройства сенсора с триггером представлен на фото рис. 3.

   Рис. 3. Фото цветка с сенсорным контактом

   При касании рукой человека растения, наведенное в теле человека переменное напряжение (1—10 мВ) передается через стебель цветка и почву на сенсорный контакт. Электронное устройство воспринимает этот сигнал и включает устройство нагрузки.

А что с цветком?

   Через ствол растения проходит электрический ток. Эта стимуляция является, по сути, ничем не хуже стимуляции осмоса, предложенной автором выше. По результатам моего эксперимента, растение прекрасно себя чувствует и размножается отростками. За время эксперимента именно это растение выделялось среди прочих (не имеющих воздействия электрического тока) своим цветущим и «безмятежным» состоянием.
   Практическая польза влияния на растения слабого электрического тока (до 100 мА) что называется «на лицо». Этот вывод дает стимул заинтересованным радиолюбителям продолжить разработки в данном направлении и использовать результаты авторских экспериментов как новаторский импульс и отправную точку с практическими доказательствами. Не дожидаясь более долговременных результатов эксперимента, полагал бы такой метод «взять на вооружение» тем садоводам и цветоводам, у которых имеются необъяснимые логикой проблемы выращивания растений.

Как улучшить работу электромеханического таймера

«Начинка» и применение электромеханического таймера


   Рис. 4. Внешний вид электромеханического таймера

   Среди многочисленных моделей механических таймеров особое внимание занимает модель BST-59549 производства Китай. Модель электромеханического таймера (далее ЭМТ) представлена на рис. 4.
   Чем примечательна эта модель?
   • Во-первых, своей функциональностью – таймер работает по заданному циклу постоянно. То есть он будет включать и выключать нагрузку периодически каждый день. И так бесконечно долго.
   • Во-вторых, механический таймер не зависит от наличия напряжения в осветительной сети. То есть в отличие от цифровых (аналогичных по назначению устройств на микросхемах и с цифровой индикацией состояния), программируемых на конкретное время включения им выключения нагрузки, механический таймер продолжает отсчет времени (чуть сбившись по времени) если электроэнергию выключат, а затем снова включать. То есть в таком случае разница по времени – это разница времени отсутствия электроэнергии, тогда как цифровой таймер вообще прекратит счет.
   • В-третьих, этот таймер позволяет задавать любые интервалы выдержки времени в течение суток, кратные 15-ти минутам. Это программирование происходит вручную перемещением желтой фишки (соответствующего лепестка) в положение «ВКЛ».
   • Мощность таймера позволяет управлять устройствами нагрузки в сети 220 В до 500 Вт.
   • На передней панели корпуса ЭМТ расположен выключатель для принудительного включения-отключения нагрузки.
   • ЭМТ работает в режиме реального времени, т. е. в устройстве есть возможность установки текущего времени путем установки времязадающего механизма (колеса) напротив стрелки. Таким образом, можно установить ЭМТ для включения практически любых бытовых приборов в заданном интервале времени.
   • Части устройства таковы, что в нем практически нечему ломаться (выходить из строя), что подтверждает электрическая схема прибора, представленная на рис. 5.
   • Цена таймера (по Санкт-Петербургу) всего 150 руб.
   При всех указанных параметрах, данная модель ЭМТ (а вместе с ней и другие аналогичные) способны работать в широком спектре услуг, будут полезны дома, в быту, на производстве и везде, где есть электроэнергия с напряжением 220 В, и необходимость включения электроприборов на заданный интервал времени.

   Рис. 5. Электрическая схема таймера

   Практически применение ЭМТ можно пояснить двумя распространенными примерами:
   • Периодическое включение/выключение освещения (бытовых приборов, нагревателя, вентилятора), например, для того, чтобы показать, что кто‑то есть дома, т. е. ввести в заблуждения квартирных воришек.
   • Периодическое включение света для аквариума. Известно, что некоторым рыбам необходимо строго дозированное освещение.
   Кроме этого, безусловно, примеров эффективного применения рассматриваемого типа ЭМТ бесконечно много, поэтому его можно справедливо назвать бытовым таймером.
   Рассмотрим электрическую схему. При подключении ЭМТ к сети 220 В через ограничительный резистор R1 напряжение поступает на катушку К1 (имеющую сопротивление 3,9 К). С помощью системы шестеренок и приложенного к этой катушке напряжения (с помощью электромагнитной индукции) в устройстве возникают электромагнитные колебания, благодаря которым таймер ведет собственный счет времени. Конечно, точность хода «внутренних часов» ЭМТ отличается от часов-будильников, однако уход от реального времени во время месячных испытаний ЭМТ (в беспрерывном режиме 24 ч) не превысил 10 мин (за 30 дней).
   Флажками желтого цвета (они хорошо видны на фото рис. 4) устанавливают время включения нагрузки. Отогнутый флажок означает включение нагрузки на 15 мин. Соответственно два отогнутых флажка означают включение нагрузки на 30 мин, 5 флажков – на 1 час 15 мин и т. д. Если между отогнутыми флажками (установленными по часовой стрелке по кругу с метками времени) не будут встречаться нормально загнутые желтые флажки (в центр круга), то включение нагрузки осуществляется в непрерывном режиме в соответствии с запрограммированной флажками выдержке времени. То есть нормально отогнутый в центр круга установочный флажок означает выключенную нагрузку. Разобраться с таким «программированием» способен любой школьник.

   Рис. 6. Фото внутреннего устройства ЭМТ

   Для наглядности на рис. 6 представлена фотография «внутренностей» ЭМТ, т. е. того, что спрятано под крышкой его корпуса. На фото хорошо видна катушка К1, ограничительный резистор и система шестеренок. Одним из важных элементов конструкции является включатель (обозначенный на рис. 5 SA1). Он представляет собой микропереключатель EML200 (очень похожий внешне на отечественный микропереключатель МП1, МП1-3 и аналогичный) способный коммутировать ток до 2 А и напряжение 250 В (эти данные вместе с маркировкой нанесены на корпус микропереключателя).
   Переключатель SA1 механически управляется рычагом из пластмассы, который хорошо виден на фото рис. 7.

   Рис. 7. Фото управляющего рычага (внизу), в середине – изображение полихлорвиниловых изоляционных трубок, вверху – моментального клея.

Типичная неисправность и реанимация ЭМТ

   То есть, запрограммированное «желтыми флажками» время включения нагрузки не всегда выполняется, а бывает ситуация, когда таймер то включится, то отключится. Эта ситуация неприемлема, тем более что такая нестабильность со временем переходит в заметный «дребезг контактов» и при управлении мощной нагрузкой неизбежны электрические помехи другим электронным устройствам, включенным в одном с ЭМТ электрическом контуре (в пределах одного электросчетчика).
   Эта неисправность происходит из-за нечеткого давления рычажка (см. рис. 7 внизу) на кнопку микропереключателя SA1 в момент воздействия на рычажок «установочного флажка». Причины неисправности очевидно в нарушении правил эксплуатации ЭМТ. В правилах по эксплуатации (переведенных на русский язык) четко написано, что «программировать» время включения/отключения таймера с помощью установочных флажков следует при отключенном питании (220 В) и в положении «0» принудительного переключателя (хорошо видного на фото рис. 4). Если эти несложные правила нарушить (что случается сплошь и рядом) таймер начинает работать неправильно.
   Всесторонне изучив рассматриваемое устройство, автор пришел к выводу, что ЭМТ данной конструкции можно легко реанимировать.
   Для этого корпус таймера аккуратно вскрывают, верхнюю крышку с установочными флажками откладывают в сторону так, чтобы на нижней стороне корпуса не вылетели шестеренки часового механизма. При этом разборку доводят до того момента, который показан на рис. 6.
   Рычажок (см. рис. 7 внизу) аккуратно вынимают пинцетом и на его направляющую часть (соприкасающуюся в конструкции с кнопкой микропереключателя SA1) надевают полихлорвиниловую (или иного материала) изоляционную трубку с внутренним диаметром 4 мм. Для фиксации, или в том случае, когда трубку диаметром 4 мм найти не удалось, но есть изоляционная трубка чуть большего диаметра, ее приклеивают к рычажку моментальным клее, аккуратно нанеся на рычажок 1 его каплю и дав просохнуть 1 мин.
   Теперь конструкцию собирают, крышки корпуса соединяют и фиксируют шурупами-саморезами.
   После такой реанимации электромеханический таймер работает без сбоев и теперь уже его можно программировать без соблюдения «несложных правил» – при включенном питании 220 В и не отключая ручной переключатель – эффективность работы ЭМТ больше не измениться.

Как улучшить работу электронного таймера

   Учитывая небольшую стоимость (200 руб.) радиолюбители с удовольствием применяют это многофункциональное устройство в быту. Однако, не все знают, что таймер может применяться не только по прямому назначению. Эти особенности рассмотрены ниже.
   Внешний вид цифрового таймера BND-50/SG1 представлен на рис. 8.
   В верхней части корпуса таймера имеется светодиод красного цвета, который индицирует включенное состояние нагрузки.
   Если открутить два винта на обратной стороне корпуса таймера, получим доступ к электронной «начинке» устройства, она представлена на рис. 9.
   Таймер имеет встроенный дисковый Ni‑MH аккумулятор с номинальным напряжением 1,2 В энергоемкоетью 70 мА/ч. Благодаря ему электронная схема продолжает отсчет времени даже если отключат электроэнергию.

   Рис. 8. Внешний вид цифрового таймера

   Рис. 9. Вид на внутреннюю начинку цифрового таймера

   При подключенном вновь напряжении осветительной сети 220 В, встроенный аккумулятор подзаряжается в течение 50–60 мин до максимальной емкости.
   Внимание, важно! Перед первым включением или после длительного хранения рекомендуется включить таймер в сеть 220 В на 3–4 часа, для того, чтобы внутренний аккумулятор зарядился.
   Элементы устройства смонтированы на двух печатных платах, которые соединяются между собой с помощью 5-ти контактного разъема (обозначение на плате S1).
   Плата 1 – электронное исполнительное устройство (рис. 0). На ней расположены электромагнитное реле, 5-ти контактный разъем S1, встроенный аккумулятор, выпрямитель и стабилизатор напряжения (выполненные по бестрансформаторной схеме), ограничительные резисторы, сглаживающие конденсаторы и усилитель тока на биполярном транзисторе. Плата 2 (блока отсчета и программирования) представлена на рис. 10.

   Рис. 10. Печатная плата блока отсчета времени и программирования

   На плате расположены микросхема таймера (в залитом каплевидном корпусе) с электрическими элементами, и ответная часть штырькового разъема, соединяющая две платы устройства.
   Плата исполнительного устройства с 5-ти контактным разъемом имеет в данном устройстве особенное значение. Данный электронный узел может работать самостоятельным исполнительным устройством под управлением другого электронного устройства (об этом ниже).
   Замеры напряжений постоянного тока между контактами разъема S1 (контакты считаем от обозначения S1):
   1-2 – 100 В;
   4-2 – 100 В;
   4—3–3 В (4 – общий, 3 – «+» питания);
   4-5 – 0,2 В.
   Если цифровой таймер включить в сеть (до того, как будет установлен определенный режим программирования) немедленно включится устройство нагрузки (и зажжется индикаторный светодиод).
   Для выключения нагрузки необходимо замкнуть выводы 4 и 5 соединительного разъема, т. е. подать «нулевой» потенциал (относительно общего провода, вывода 4 разъема S1) на контакт 5 того же разъема.
   На рис. 11 представлена схема управления исполнительным устройством (платой 1).
   Исполнительный узел сконструирован так, что (в подключенном к сети 220 В устройстве) усилитель тока на транзисторе VT1 открыт, и реле К1 включено. Контакты реле К1 замыкают электрическую цепь нагрузки.
   При поступлении в точку А (вывод 5 разъема S1 — обозначение на плате) потенциала, близкого к «0», транзистор VT1 закрывается, реле К1 и нагрузка – обесточиваются.
   Данное промышленное устройство несложно преобразовать в электронный блок управления мощной нагрузкой, где управляющим электронным узлом (подключенному к исполнительному устройству) может служить не только программируемый цифровой (или механический) таймер, но например, приемник ИК или радиосигналов – любой электронный узел с выходным напряжением 2,5–5 В постоянного тока.

   Рис. 11. Схема исполнительного узла электронного цифрового таймера
   Технические и электрические характеристики таймера
   Максимальная коммутационная нагрузка 3,52 кВт, 16 А в осветительной сети 220 В, 50–60 Гц. В устройстве применен выпрямительный диодный мост DB107.
   Электрические характеристики диодного моста DB107:
   • максимальное постоянное обратное напряжение 1000 В;
   • максимальное импульсное обратное напряжение 1200 В;
   • максимальный допустимый прямой импульсный ток 50 мА;
   • максимальный обратный ток 10 мкА;
   • рабочая температура —55…+125 °C;
   • корпус DB-1.
   Его можно заменить аналогами по электрическим характеристикам BR310, КЦ422Г или составить, например, из четырех дискретных диодов типа КД213Б.
   Усилитель тока реализован на популярном биполярном транзисторе S9014. Его предельные электрические характеристики: напряжение коллектор-эмиттер 50 В, ток коллектора 150 мА. Вместо S9014 можно использовать транзисторы-аналоги: S9015, S9018, КТ368А.
   Исполнительное реле К1 — электромагнитное, рассчитанное на постоянное напряжение 24 В (в активном состоянии ток потребления 25 мА) и ток коммутации в электрической цепи 220 В до 16 А. Это значение тока коммутации написано на корпусе реле (фирмы Eleway) и представляет довольно большую величину.
   Внимание! Автор не испытывал данное реле (и устройство) при максимальном токе нагрузки. Для коммутации тока 16 А (в цепи 220 В) придется предусмотреть электрические соединительные провода с большим сечением жил.
   Представляется, что радиолюбителю вполне достаточно тока нагрузки до 6 А. Подходящая нагрузка может быть различной (от утюга мощностью 1,3 кВт, электрочайника и конвектора-обогревателя) – этими нагрузками эксплуатация таймера подтверждается авторскими экспериментами длительное время (полгода).

Функциональные особенности и сервисные возможности

Особенности настройки и программирования таймера

   Программирование таймера. Нажатием кнопки «символ руки» выбирают режим работы таймера:
   • On – таймер постоянно включен;
   • Auto – режим работы с программами;
   • Off – таймер выключен.
   Выбранный режим будет подтвержден соответствующим значком на ЖКИ.
   Одновременным нажатием кнопок Hour и Min (на передней панели корпуса таймера) осуществляется переход на летнее время, при этом на ЖКИ появляется специальный символ. При повторном нажатии указанных кнопок возвращается первоначальное показание времени.
   При нажатии кнопки Сброс (Reset) все установленные ранее программы работы таймера удаляются.
   Для непосредственного программирования таймера необходимо однократно нажать кнопку Prog (Программа). При этом на дисплее отобразится «1 ON». После этого можно задать время включения нагрузки таймера и день недели для данной (первой) программы. Это осуществляется соответственно нажатием кнопок Week (день недели), Hour (часы) и Min (минуты).
   Переход в режим установки следующих программ осуществляется последовательным (пошаговым) нажатием кнопки Prog. Всего таймер может выполнять 8 различных программ.
   При нажатии кнопки Clock таймер выходит из режима установки программ и возвращается к показанию (на ЖКИ) текущего времени и дня недели.
   Настройка текущего времени. Для настройки текущего времени одновременно нажимают кнопки Clock и Hour. При каждом таком нажатии показание часов на ЖКИ увеличивается на один (в 24-часовом цикле). Аналогично устанавливают минуты (Clock и Min). При установке минут на ЖКИ обнуляются показания секунд. Одновременным нажатием Clock и Week устанавливают день недели.
   Режим произвольного времени включения и отключения таймера. Одновременным нажатием кнопок Week и Hour активизируется режим произвольного выбора времени включения и отключения. При этом на дисплее появляется символ «О».
   Включение и отключение таймера происходит с (произвольной) задержкой, выбранной по случайному закону в диапазоне 2—32 мин.
   При повторном одновременном нажатии кнопок Weekn Hour этот режим отключается.

Вопросы оригинального практического применения в быту

   Практические варианты применения могут быть расширены, например, на пользу автовладельцам, которым требуется в холода периодически прогревать (подогревать) автомобиль. Нагревательный элемент подключают к сетевому разъему на корпусе таймера.
   Хорошие варианты практического применения таймера подскажут и те радиолюбители, которым приходится периодически заряжать какое‑либо электронное оборудование (не снабженное устройством самоконтроля зарядки аккумуляторов), например, отдельные типы портативных или профессиональных радиостанций. В этом случае сетевой адаптер вставляют в гнездо для сетевой вилки (штекера) на корпусе таймера.
   Наступают холода, и цифровой таймер поможет обогреть собачий домик на улице или аквариум с помощью соответствующего нагревательного элемента, рассчитанного на напряжение осветительной сети 220 В. В таймере надо только установить соответствующую программу включения/отключения нагрузки.
   2. Электронный таймер BND-50/SG1 является многофункциональной законченной конструкцией и, кроме прямого назначения коммутации нагрузки в сети 220 В, может иметь и другие варианты применения.
   В частности, учитывая, что отсчет времени не прекращается и в автономном режиме работы (от встроенного аккумулятора более 30 суток) это можно с успехом использовать в «полевых» условиях, удаленных от электрической сети 220 В.
   Таким образом, таймер может в соответствии с установленной программой, выдавать управляющий импульс (управляющую команду) амплитудой 1 В на контакте 5 соединительного разъема. Этот контакт помечен на плате символом С.
   Как и для чего применять этот сигнал управления‑каждый радиолюбитель может решить по-своему.
   Внимание! Популярный транзистор S9014 отлично работает электронных устройствах с напряжением питания 1,2–3 В. Поэтому управляющий сигнал можно снимать не только с точки С 5-контактного разъема таймера (в этой точке сигнал потребует дополнительного усиления), и непосредственно с коллектора транзистора (параллельно реле К1). В данном случае обмотка реле (из-за небольшого напряжения и тока в цепи) не оказывает «шунтирующего» влияния на управляющий сигнал.
   Небольшой компактный корпус устройства позволяет носить цифровой таймер с собой в туристических поездках, в автомобиле и в других случаях, в том числе применять как часы (реальное время отображается на ЖКИ).

Как применять внешние антенны для сотовых телефонов

   Антенны в мобильной телефонии занимают важное место. Именно они связывают телефонный аппарат с сотовой системой и обеспечивают соединение с другим удаленным абонентом. У сотового телефона есть простая и удобная внутренняя штатная антенна. Иногда она выделяется в корпусе «мобильника» небольшим штырем или «наростом». В большинстве случаев штатная антенна обеспечивает устойчивую связь. Но бывают ситуации, когда из телефона нужно «выжать» все, что только возможно.
   Некоторые пользователи сотовых телефонов не знают, что даже в пределах зоны обслуживания почти каждой базовой станции, независимо от принадлежности к оператору сотовой связи (стандарту), есть участки с негарантированным покрытием. Иногда даже у очень популярных сотовых операторов встречаются «мертвые зоны», где для потери или восстановления связи достаточно сделать 2–3 шага в сторону. Количество базовых станций, размещенных в разных районах, полностью эту проблему не решает. Это беда не только сотовой связи, но даже и телевидения (обладающего мощными передатчиками).
   На качество соединения влияет множество факторов: конфигурация антенны, находящиеся в непосредственной близости от нее объекты, правильное заземление, угол отклонения от вертикали, длина соединительного кабеля. Конструкция современного мобильного телефона не позволяет использовать высокоэффективную встроенную антенну, поэтому, для того чтобы обеспечить качественную связь в местах с недостаточным радиопокрытием, ей необходима помощь – дополнительная сменная антенна.
   Она особенно необходима телефону в автомобиле (особенно за пределами крупных населенных пунктов, вдали от магистралей), так как кузов автомобиля является экраном, препятствующим прохождению радиосигнала, и искажающим его. Практически все типы телефонов допускают использование сменных антенн. Однако успех будет обеспечен лишь тогда, когда антенна используется правильно.
   Сменные антенны имеет смысл применять в том случае, если уровень принимаемого сигнала настолько мал, что связь становится неустойчивой. В противном случае связь может даже ухудшиться.
   Можно выделить несколько ситуаций, когда целесообразно применение сменных антенн:
   • разговор ведется из экранированного помещения или из автомобиля. Вынесенная наружу антенна существенно улучшает качество связи. Причем, если за пределами автомобиля (или здания) условия прохождения сигнала хорошие, нет необходимости применять антенны с повышенным усилением (этот параметр измеряется в дБ и указывается в паспорте антенны). Однако наличие кабеля между антенной и телефонным аппаратом и дополнительных разъемов (особенно бесконтактных – емкостных и индуктивных) часто приводит к существенным потерям сигнала;
   • между говорящим по телефону абонентом и базовой станцией находятся массивные сооружения, складки местности или толстые стены. Сигнал может быть сильно ослаблен, и распространяться со смешанной, искаженной поляризацией;
   • разговор ведется на большом удалении от ближайшей базовой станции – на краю или за пределами зоны действия сотовой системы. Сигнал сильно ослаблен, но распространяется горизонтально. Целесообразно применить антенну с усилением не менее 7 дБ, предпочтительно штыревую.
   При осуществлении связи со стационарных объектов (квартир, офисов, дач) целесообразно использовать направленные внешние антенны. Конечно, при этом телефон становится менее «мобильным», так как он будет подключен через адаптер к антенному кабелю, но качество связи во многих случаях становится даже выше, чем при движении рядом с базовой станцией.
   Практически в каждом салоне связи можно купить самые разнообразные автомобильные и стационарные антенны.

Когда требуется внешняя антенна

   Начнем с наиболее часто встречающегося примера использования мобильного телефона – в движущемся автомобиле. В этом случае выносная антенна отводит излучение телефона от головы, а также увеличивают его чувствительность. Используя автомобильную антенну, вы улучшаете качество связи, продлеваете срок работы батареи телефона и ограждаете себя от электромагнитного излучения.
   Можно просто поставить магнитную антенну на крышу автомобиля или закрепить ее на боковом стекле. Стоимость такой антенны не превышает 500 руб.

Особенности связи в автомобиле

   1. Внутри автомобиля работоспособность телефонного аппарата резко понижается, поскольку в нем сигнал от базовой станции принимается намного хуже, чем снаружи.
   2. Внутри автомобиля излучение от собственной антенны телефона многократно отражается, в результате чего все пассажиры оказываются сидящими как бы внутри замкнутого контура с внутренним излучением, как продукты в микроволновой печи.
   3. Принимая недостаточно сильный сигнал, аппарат получает от базовой станции команду повысить уровень мощности; следовательно, увеличивается уровень излучения и повышается расход электроэнергии.
   Есть еще один момент, требующий внимания, это помехи другим электронным устройствам.
   Устранение помех. Радиосигнал, излучаемый телефоном, может отразиться на работе электронных устройств и систем автомобиля. Внешняя антенна не только помогает избежать вышеперечисленных неприятностей, но и улучшает качество связи. Достигается это в основном благодаря выведению сигнала за пределы автомобиля и более эффективному перераспределению диаграммы направленности антенны.

Антенны

   Согласно теории распространения электромагнитных волн, для оптимального функционирования в автомобиле антенна должна равномерно излучать сигнал во все стороны в горизонтальной плоскости (имеет круговую диаграмму направленности), иметь хорошее заземление, находиться как можно выше и на достаточной площади заземленной поверхности. При этом, если антенна штыревая, угол отклонения от вертикали не должен превышать 15°.
   Наилучшие показатели (для связи в автомобиле) обеспечиваются штыревой антенной, врезанной в центр крыши. Заземление обеспечивается надежным контактом между «массой» автомобиля и «противовесом» антенны, в то время, как магнитная антенна из-за некачественного заземления (контакт только на разъеме) даст худшие показатели.
   Автомобильная антенна состоит из двух частей: внешней (штырь и внешняя часть базы) и внутренней (внутренняя часть базы или коробка связи, к которой подключается кабель). Надежное соединение внешней и внутренней частей жизненно важно для обеспечения эффективной работы антенны. Выбор места на автомобиле, где будет крепиться антенна, имеет значение не только с точки зрения удобства. Расположение антенны относительно металлического кузова автомобиля влияет на ее характеристики, из-за чего номинальное усиление, указанное в паспорте антенны, может только приблизительно соответствовать реальному.
   Лучше всего, если антенна установлена в сквозное отверстие в крыше автомобиля, поскольку в этом случае обеспечивается непосредственный контакт всех ее элементов. В этом положении усиление практически соответствует номинальному, а диаграмма направленности – круговая. Но если кто‑то не хочет сверлить отверстие в крыше, можно воспользоваться другими способами установки: «сквозь стекло», на боковое стекло (в этих случаях эффективность антенны будет не намного лучше магнитной), или на багажник.
   Монтаж антенны на бампере существенно искажает ее диаграмму направленности. Антенны с большим усилением так крепить не рекомендуется. Расположение антенны на багажнике или капоте даст промежуточный результат. При установке «сквозь стекло» антенна чаще всего размещается у верхнего края заднего стекла автомобиля. Внешняя часть базы антенны со штырем крепится снаружи, а коробка связи – внутри салона. Потери обычно не превышают 0,5–1 дБ. Однако следует помнить, что антенна не будет эффективно работать, если стекло, к которому она прикрепляется, тонированное. Нельзя ставить антенну и поверх проводников обогревателя. Кроме того, многие автомобили высшего класса имеют стекла с двойным покрытием и в этом случае устанавливать антенну «сквозь стекло» тоже нельзя (не поможет).
   Временный способ установки антенны на крышу с помощью магнитного основания имеет ряд очевидных преимуществ. Антенна может быть установлена в центре крыши, что обеспечивает круговую диаграмму направленности и не требует сверления отверстия. Однако, (кроме ее невысокой эффективности, относительно «жесткого» крепления) такую антенну легко снять, а значит, легко и украсть.
   Соединительный кабель от телефонного аппарата к антенне обычно выводится через дверь и может быть легко поврежден. Есть еще один способ временной установки антенны – на боковое стекло. В этом случае кабель проходит внутри салона, и «прихватизировать» такую антенну сложнее. И хотя диаграмма направленности отнюдь не идеальна, качество связи будет вполне приемлемым. Существуют варианты крепления, позволяющие регулировать положение излучателя антенны по вертикали.
   Кабель часто входит в комплект поставки антенны – обычно это неразъемное соединение. Исходная длина кабеля, как правило, составляет 3 м; при монтаже антенны его обрезают, вследствие чего приходится устанавливать разъем на конце кабеля, обращенном к телефону. Эту операцию нужно делать тщательно – неправильно установленный разъем или плохой контакт в нем способны нарушить работу всей системы. Соединение кабеля с телефоном бывает прямым и опосредованным – через устройство громкой связи.
   В первом случае кабель присоединяется через дополнительный разъем телефонного аппарата. Во втором случае кабель присоединяется к устройству громкой связи, а телефон вставляется в гнездо этого устройства. Некоторые модели телефонов не имеют специального гнезда для сменной антенны, и поэтому их можно присоединять только через устройство громкой связи (иногда можно отсоединить штатную антенну и подсоединить кабель вместо нее, но это неудобно).
   Во втором случае можно устанавливать и использовать недорогие стационарные направленные антенны для мобильных телефонов в городах и селах, расположенных вокруг базовых станций операторов сотовой связи на удалении до 35 км (GSM-900), до 40–45 км (D‑AMPS), до 55–60 км (CDMA), до 70 км (NMT-4501) в зависимости от рельефа местности.
   Сотовый телефон с внешней антенной с успехом заменит обычный, и сможет помочь не только передать важные новости, но и вызвать экстренную помощь и спасти жизнь человеку в критической ситуации.
   Основными разновидностями направленных антенн являются антенны типа «волновой канал» и логопериодические. Наиболее популярны первые.
   Они обладают большим усилением и просты в изготовлении. Логопериодические антенны более сложны и дороги, однако они имеют большую полосу частот и не требуют дополнительной настройки.
   Антенна типа «волновой канал» подобна одноименной телевизионной антенне, она состоит из ряда параллельных вибраторов, расположенных в одной плоскости: полуволнового линейного или петлевого вибратора, к которому подключен кабель снижения (активный вибратор), рефлектора и директоров (пассивные вибраторы).
   Длина рефлектора и его расстояние до активного вибратора подобраны так, что излучение рефлектора ослабляет излучение активного вибратора в обратном направлении и усиливает его в прямом направлении. Таким образом, рефлектор является своеобразным отражателем, обеспечивающим формирование однонаправленной характеристики излучения (приема). Нередко в качестве рефлектора используется система вибраторов или сетка. Усилению излучения в прямом направлении способствуют директоры, которые возбуждаются, как и рефлектор, под воздействием излучения активного вибратора. Следовательно, казалось бы, усиление антенны тем больше, чем больше у нее директоров. Однако чем больше количество директоров в антенне, тем меньше сказывается на ее усилении добавление каждого нового директора и тем сложнее добиться согласованной работы всех директоров. Одновременно это ведет к сужению полосы пропускания антенны.
   К достоинствам антенны «волновой канал» можно отнести сравнительно высокое усиление при простоте конструкции.
   К недостаткам этой антенны следует отнести сложность ее настройки при числе директоров более трех. Антенны, даже собранные по одному чертежу на одной и той же линии, оказываются настроенными по-разному и не допускают дополнительной настройки. Реальное усиление такой антенны значительно ниже указанного (в среднем на 3–4 дБ). Кроме того, узкая полоса пропускания ведет к резкому снижению усиления в тех системах связи, где используют дуплексные частоты с большим разносом. Например, стандарт DAMPS использует частоты 824–840 МГц и 869–894 МГц, и использование антенны «волновой канал», настроенной на середину этого диапазона, приводит к заметному ухудшению работы антенны на краях диапазона (на рабочих частотах). То же самое относится к популярным стандартам GSM-900, GSM-1800.
   Логопериодические антенны – это один из типов антенн с неизменной формой диаграммы направленности и постоянным усилением в широком диапазоне частот.
   У такой антенны во всем диапазоне частот обеспечивается хорошее согласование антенны с фидером. Логопериодическая антенна образована собирательной линией в виде двух труб, расположенных параллельно, к которым поочередно через один крепятся вибраторы.
   Рабочая полоса частот антенны со стороны нижней частоты зависит от размеров наиболее длинных вибраторов, а со стороны верхней частоты – от размеров наиболее коротких вибраторов. Усиление антенны определяется количеством вибраторов, каждый из которых является активным. Следовательно, задав полосу частот (размеры максимального и минимального вибраторов), можно получить достаточно высокий коэффициент усиления во всем диапазоне за счет увеличения количества вибраторов.
   Логопериодические антенны хорошо работают в широкополосных системах связи: DAMPS, GSM-900, GSM-1800 и в относительно узкополосных, например, в системе доступа с кодовым разделением каналов CDMA (ширина полосы частот 1,5 МГц). Они не требуют дополнительной настройки, поскольку все вибраторы являются активными и расстроены один относительно другого на постоянную величину, являющуюся характеристикой антенны.
   К недостаткам этой антенны можно отнести ее более сложную конструкцию и повышенную трудоемкость в изготовлении по сравнению с антенной «волновой канал».
   Таким образом, в системах сотовой связи стандартов CDMA, DAMPS, GSM-900/1800 целесообразно применять логопериодические антенны с необходимым для каждого конкретного случая усилением. На границе зоны покрытия наиболее эффективны антенны типа «волновой канал», однако настройка этих антенн должна выполняться специалистом.
   Также следует обратить внимание на материал, из которого изготовлена антенна.
   На частотах 800–900 МГц, а тем более 1800 МГц, несколько лучший результат дает использование материалов с высокой проводимостью, например, медь, латунь. Это повышает добротность антенны и сводит к минимуму потерь.

Как оптимизировать мобильную связь

Безопасность

   Как известно, каждому сотовому аппарату присваивается свой электронный серийный номер (ESN), который кодируется в микрочипе телефона при изготовлении телефона. Активируя SIM карту (Subscriber Identity Module) – микрочип, в котором «прошит» абонентский номер, мобильный телефонный аппарат получает мобильный идентификационный номер (MIN).
   Площадь, охватываемая сетью GSM, разбита на отдельные, прилегающие друг к другу ячейки (соты) – отсюда пошло название «сотовая связь», в центе которых находятся приемо-передающие базовые станции. Обычно, такая станция имеет шесть передатчиков, которые расположены с диаграммой направленности 120° и обеспечивают равномерное покрытие площади.
   Одна средняя современная станция одновременно может обслуживать до 1000 каналов. Площадь «соты» в городе составляет около 0,5–1 км2, вне города в зависимости от географического расположения она может достигать и 20, и 50 км2. Телефонный обмен в каждой «соте» управляется базовой станцией, которая принимает и передает сигналы на большом диапазоне радиочастот (выделенный канал – шаг для каждого сотового телефона минимальный). Базовая станция подключена к проводной телефонной сети и оснащена аппаратурой преобразования высокочастотного сигнала сотового телефона в низкочастотный сигнал проводного телефона и наоборот, чем обеспечивается сопряжение этих двух систем.
   Технически современная аппаратура базовой станции занимает площадь 1–3 м2 и располагается в пределах одного небольшого помещения, где ее работа осуществляется в автоматическом режиме. Для стабильной работы такой станции необходимо лишь наличие проводной связи с телефонным узлом (АТС) и сетевое питание 220 В. В городах и населенных пунктах с большим скоплением домов передатчики базовых станций располагаются прямо на крышах домов. В пригородах и на открытой местности используются вышки в несколько секций (их часто можно увидеть расположенными вдоль шоссе).
   Зона покрытия соседних станций соприкасается. При передвижении телефонного аппарата между зонами покрытия соседних станций происходит его периодическая регистрация. Периодически, с интервалом 10–60 мин (в зависимости от оператора), базовая станция излучает служебный сигнал. Приняв его, мобильный телефон автоматически добавляет к нему свой MIN– и ESN‑номера и передает получившуюся кодовую комбинацию на базовую станцию. Так осуществляется идентификация конкретного мобильного сотового телефонного аппарата, номера счета его владельца и привязка аппарата к определенной зоне, в которой он находится в данный момент времени. Этот момент весьма важен – на данном этапе можно контролировать передвижения того или много объекта, а уж кому это выгодно вопрос другой – главное, есть такая возможность.
   Когда пользователь соединяется с кем‑либо по своему телефону, базовая станция выделяет ему одну из свободных частот той зоны, в которой он находится, вносит соответствующие изменения в его счет (производит списание средств) и передает его вызов по назначению.
   Если мобильный пользователь во время разговора перемещается из одной зоны связи в другую, базовая станция покидаемой зоны (соты) автоматически переводит сигнал связи на свободную частоту соседней с ней зоны (соты).
   Самыми уязвимыми с точки зрения возможности перехвата ведущихся переговоров (прослушивания) являются аналоговые мобильные сотовые телефоны. Это стандарт NMT450 (присутствует в Беларуси). Уверенная связь и ее удаленность от базовой станции в таких системах напрямую зависят от мощности излучения передающего сотового телефона. Аналоговый принцип передачи информации основан на излучении в эфир нецифрового радиосигнала, поэтому, настроившись на соответствующую частоту такого канала связи, теоретически можно прослушивать разговор. Однако, стоит остудить особо горячие головы – прослушать переговоры сотовой связи данного стандарта не так просто, поскольку они шифруются (искажаются) и для точного распознавания речи нужен соответствующий дешифратор.
   Переговоры данного стандарта пеленговать проще, чем скажем, стандарта GSM – цифровой сотовой связи, мобильные телефоны которых передают и принимают информацию в виде цифрового кода. Легче всего пеленгуются стационарно расположенные или неподвижные объекты, осуществляющие сотовую связь, труднее – мобильные, так как перемещение абонента в процессе разговора сопровождается снижением мощности сигнала и переходом на другие частоты (при передачи сигнала от одной базовой станции – к соседней).
   Приход в каждую семью сотовой связи (сегодня в городах и школьники получают такие подарки), накладывает на пользователя и определенные нюансы.
   К хорошему быстро привыкаешь, и комфорт становится уже незаменимым. Наличие сотового телефона позволяет выявлять его местоположение как текущее, так и все перемещения в прошлом. Это может выявляться двумя способами.
   Известные методы пеленгования. Одним из них является метод целенаправленного пеленгования сотового телефона, определяющий направление «на работающий передатчик» из 3…6 точек, и дающий засечку местоположения источника радиосигналов. Особенность такого метода в том, что он может применяться по чьему‑либо распоряжению, например, органов, уполномоченных по закону.
   Второй метод – через оператора сотовой связи, который в автоматическом режиме постоянно регистрирует, где находится тот или иной абонент в данный момент времени даже в том случае, когда он не ведет никаких разговоров. Эта регистрация происходит автоматически по идентифицирующим служебным сигналам, автоматически передаваемым сотовым телефоном на базовую станцию. Точность определения местонахождения абонента зависит от целого ряда факторов: топографии местности, наличия помех, и отражения сигнала от зданий, положение базовых станций и их загруженности (количества активных мобильных телефонов оператора в данной соте), а также размера соты. Поэтому точность определения местонахождения абонента сотовой связи в городе заметно выше, чем в открытой местности и может достигать пятна в несколько сот метров.
   Анализ данных о сеансах связи абонента с различными базовыми станциями (с какой и на какую станцию подавался вызов, время вызова и тому подобное) позволяет восстановить картину всех перемещений абонента в прошлом. Данные автоматически регистрируются у оператора сотовой связи (для выписки счетов и не только), поскольку оплата таких услуг основана на длительности использования системы связи. Эти данные могут храниться несколько лет, и это время пока не регламентируется федеральным законом, только ведомственными актами.
   Труднее перехватить разговор, если он ведется с движущегося автомобиля, так как расстояние между пользователем сотового телефона и пеленгующей аппаратурой (если идет речь об аналоговой связи) постоянно изменяется и, если эти объекты удаляются друг от друга, особенно в пересеченной местности среди домов, сигнал ослабевает. При быстром перемещении сигнал переводится с одной базовой станции на другую, с одновременной сменой рабочей частоты – это затрудняет перехват всего разговора целиком (если он не ведется целенаправленно с участием оператора связи), поскольку для нахождения новой частоты требуется время.
   Выводы из этого можно сделать самостоятельно. За собой оставлю только одну рекомендацию – отключайте свой сотовый телефон, если не желаете, чтобы ваше местонахождение стало известно.
   Особенности работы МТА. Современные МТА способны, кроме того, вести запись нетелефонных разговоров своего прямого владельца. Что это значит?
   Современный МТА может включаться в режим диктофона (записи звуков от встроенного микрофона) по заданной программе автоматически, без санкции своего владельца. Не факт, что каждый МТА записывает речь и голос владельца, а затем передает информацию, но такая возможность в каждом современном МТА технически предусмотрена. Это сродни ружью, которое висит на стене. И если действие происходит во время спектакля в театре, то почти очевидно, что до конца спектакля ружье выстрелит. Так и в данном случае – возможность записи и передачи информации у МТА есть, и этот фактор надо учитывать при эксплуатации своего «мобильника».
   Как происходит передача информации в эфир (информацию принимает ближайшая к МТА оператора станция – сота)?
   МТА общается со станцией пачками цифровых сигналов-импульсов, которые называются тайм-слоты. Продолжительность одного служебного сеанса связи может длиться от долей секунды до нескольких секунд.
   Такие сеансы служебной связи МТА с базовой станцией осуществляет постоянно, когда сотовый телефон находится во включенном состоянии. Первоначально это происходит после включения питания МТА, тогда телефон, общаясь с ближайшей станцией связи своего оператора (соответственно установленной SIM-карте) позиционирует сове положение на местности, выдает в эфир свои данные (номер IMEL и др.), т. е. регистрируется в сети. На основании этой регистрации при последующих переговорах данному абоненту начисляется платеж за соединения, услуги связи, тарификация вызовов и роуминг. Кроме тайм-слотов в сеансе связи при включении питания, МТА периодически, примерно один раз в час (а при активном перемещении постоянно) выходит на связь с близлежащей базовой станцией, позиционируя свое положение и в случае необходимости (выход за пределы соты) регистрируясь в зоне ответственности другой соседней базовой станции. Длительность и периодичность сеансов служебной связи (тайм-слотов) у разных МТА различна и составляет (периодичность) от 10 до 35 раз в сутки. При этом длительность тайм-слотов колеблется в диапазоне 2—25 мс.
   Во многих современных МТА автоматически включены функции различного рода сервисного информирования владельца, например, о прогнозе погоды или новостях, поэтому тайм-слоты у такого телефона будут чаще и иметь большую продолжительность. В данном случае определить, какие именно сигналы посылает ваш «мобильник» к базовой станции без специального оборудования нельзя. Можно лишь зафиксировать сам факт короткого сеанса связи, произошедшего без участия владельца МТА. Устройства для фиксации описаны в радиолюбительской литературе.
   Эту особенность «своего» МТА необходимо знать каждому владельцу сотового телефона, не смотря на то, что компании производители пока не спешат ни делиться данной информацией с покупателями своего товара, ни объяснять эти функции и их предназначение. Как говорится, предупрежденный – защищен.
   Косвенным признаком работы МТА на передачу большими мощностями является быстро разряжающийся аккумулятор.

Как проверить

   На заре массовой популяризации сотовых телефонов (это было не так и давно) среди населения преобладали МТА, приобретенные за рубежом и требующие русификации. Кроме этого, часть сотовых телефонов, привозимых из-за рубежа СНГ (купленных на вторичном рынке, потому, что дешево) при подключении SIM-карты местного оператора оказывались заблокированными (не реализовывали часть заявленных в меню МТА и в его руководстве по эксплуатации функций). Люди несли МТА в соответствующий сервис (согласно названию МТА) и порой получали ответ: ваш телефон в России работать не будет. С тех пор МТА привезенные из-за границы частным порядком стали негласно делиться на «белые» и «серые». «Белые» можно реанимировать и использовать в СНГ «по полной программе», а серые практически безнадежны, или требуют таких вложений, которые перетягивают саму его стоимость. В связи с этим зародился тестовый способ проверки МТА.
   Способ проверки сотовых телефонов (серый/белый). Для теста надо последовательно нажать клавиши на клавиатуре: *#6# или (как вариант для других моделей МТА) *#06#. В результате высветиться серия и модельный номер, указанные в паспортных данных. Такие же данные нанесены на корпусе МТА под аккумуляторной батареей. Чем они помогут?
   При потере или краже аппарата эти данные требуется передать своему сотовому оператору, если, конечно, вы надеетесь найти свой телефон. Не трудно догадаться, что после данной процедуры уведомления сотовой компании, ваш МТА вместе с SIM-картой (или даже вновь вставленной) находится на контроле у вашего сотового оператора. Для того, чтобы ваш МТА точно нашелся или был бы заблокирован в обслуживании у одного из операторов (которым вы пользовались до утери), требуется сообщить сотовому оператору IMEI вашего МТА (идентификационный номер). Этот номер (техника вопроса описана в данном абзаце выше) лучше выяснить сразу (при покупке или эксплуатации МТА) и где‑нибудь записать вдали от посторонних глаз.

Практические новаторские решения

   Подключившись с помощью проводов малого сечения (например, с помощью популярного гибкого монтажного изолированного провода МГТФ диаметром 0, 6–1 мм) к выводам контактной пары на клавиатуре МТА можно продублировать нажатие соответствующей кнопки клавиатуры МТА с помощью нормально разомкнутых контактов обычного (слаботочного) электромагнитного реле. Для этого могут применяться профессиональные и радиолюбительские конструкции, которые можно найти на страницах радиолюбительских журналов и в Интернете.
   Важное преимущество управления мобильным телефоном с помощью контактов слаботочного электромагнитного реле (далее СЭМР) заключается в отсутствии гальванической связи устройства управления и клавиатуры самого телефона.
   Почему бы радиолюбителю– конструктору не использовать вместо СЭМР оптрон. В большинстве случаев (типов МТА) это очевидно возможно без какого‑либо изменения схемы (печатной платы), однако следует учитывать очень важный фактор – сопротивления утечки оптрона в разомкнутом состоянии коммутирующих контактов и сопротивления контактной пары при нажатой кнопке мобильного телефона. Кроме того, важна полярность подключения оптрона и полярность электрических потенциалов на клавиатуре мобильного телефона.
   Владелец мобильного телефона, конечно, знает, что последнему абоненту (из списка набранных номеров) можно позвонить, пользуясь только одной кнопкой (кроме кнопки включения МТА или кнопок разблокировки клавиатуры, когда такой режим включен). В большинстве МТА нажатием только одной кнопки можно осуществить телефонную связь с абонентом, номер которого был набран последним. Для этого нет необходимости в нажатии двух разных кнопок (как описано в некоторых статьях для радиолюбителей), а достаточно лишь четко изучить возможности и меню своего мобильного аппарата и использовать его «ручное» программирование (как описано в руководстве по эксплуатации).
   Во вскрытом корпусе МТА к контактным площадкам кнопки «вызов» проводами МГТФ подпаивают два проводника длиной не более 50 см. Для этих целей применяют маломощный паяльник с мощностью 25 Вт и напряжением не более 24 В.
   Устройство, которое замкнет эти контакты, может быть любым: от охранной сигнализации до сигнализатора варки яиц. Главное, что в случае нарушения шлейфа охраны или срабатывания сигнализации замкнутся контакты управляющего реле, а значит, МТА пошлет вызов на заранее запрограммированный номер с целью уведомления об изменении состояния контролируемого параметра. Абоненту, принявшему вызов, остается лишь взглянуть на номер вызывающего абонента (в большинстве случае он определяется нормально). Если это номер телефона, задействованного в охранной системе, значит, сработала охранная сигнализация.

Что надо знать об аккумуляторах портативных и сотовых телефонов

   Новая и правильно заряженная аккумуляторная батарея сотового телефона (АКБ) практически не требует дополнительного обслуживания и особого внимания. А если она уже не новая? Если она заряжена неправильно? Что тогда делать?
   

комментариев нет  

Отпишись
Ваш лимит — 2000 букв

Включите отображение картинок в браузере  →