Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

Глаз у страуса больше, чем его мозг.

Еще   [X]

 0 

Удивительная химия (Леенсон Илья)

автор: Леенсон Илья категория: Химия

Эта книга написана для всех, кто интересуется химией. Даже если вы еще не начали изучать ее в школе, вы поймете почти все, о чем здесь написано. Если же в химии вы не новичок, вы тоже найдете много интересного и нового для себя.

Год издания: 2006

Цена: 100 руб.



С книгой «Удивительная химия» также читают:

Предпросмотр книги «Удивительная химия»

Удивительная химия

   Эта книга написана для всех, кто интересуется химией. Даже если вы еще не начали изучать ее в школе, вы поймете почти все, о чем здесь написано. Если же в химии вы не новичок, вы тоже найдете много интересного и нового для себя.


Илья Абрамович Леенсон Удивительная химия

Предисловие

   Во второй половине XIX века многие ученые, особенно физики, всерьез полагали, будто все основные открытия в науке уже сделаны, и жалели своих преемников, ученых XX века, на долю которых останутся только кое-какие уточнения. В связи с этим вспоминается история, случившаяся с выдающимся немецким физиком, лауреатом Нобелевской премии Максом Планком (1858–1947); именно он «изобрел» в 1900 году кванты, которые породили массу новых «квантовых» наук, в том числе и квантовую химию. Когда молодой Планк пришел к семидесятилетнему профессору Мюнхенского университета Филиппу Жолли (1809–1884), известному своим изобретением воздушного термометра, и сказал, что хотел бы посвятить себя теоретической физике, то услышал неожиданную отповедь: «Молодой человек! Зачем вы хотите испортить себе жизнь? Ведь здание теоретической физики уже в основном завершено. Стоит ли браться за такое бесперспективное дело?»
   Совершенно иначе смотрят на эту проблему современные ученые. Вот что написано в предисловии к одной из книг по химии: «Далекие от науки люди часто полагают, что раз уж существует какая-либо солидная наука, то уж, конечно, зиждется она на прочном и основательном фундаменте; дело нынешнего поколения – постройка очередного этажа, поскольку все остальное здание уже построено. Однако ни один исследователь так не думает. Более того, именно в фундаменте науки часто обнаруживаются серьезные недоделки, возникает необходимость существенной перестройки основных, опорных представлений. Исследования, направленные на совершенствование этих представлений, и называют фундаментальными – не за объем, а именно за направленность».
   Автор другой книги по химии, хотя и смотрит на ту же проблему несколько иначе, фактически говорит о том же: «Вот человек трудится всю жизнь. Творение вырастает во всей красе. Проходят годы. Увенчанный лаврами строитель, может быть, еще жив. Но сооружение уже кажется уродливым и никчемным. Приходят другие люди с отбойными молотками. Монолит теории превращается в гранитную крошку, и пыль застилает все вокруг. На освободившемся месте возводится нечто воздушное из стекла и металла. Может быть, и это чудо техники обречено на слом. Кто знает? Но оно прекрасно и необходимо – сейчас… И фасад, и внутренняя планировка “здания науки” непрерывно меняются. И как надежда на совершенство, незыблемо стоят фундаментальные теории – творения великих мастеров».
   К таким фундаментальным теориям, без сомнения, можно отнести периодический закон, открытый Д. И. Менделеевым (1834–1907) в 1869 году. Об этом законе его автор писал в конце своей жизни: «По-видимому, периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещается». Так оно и случилось.
   Как видим, многие ученые представляют себе науку как строящееся здание, и это очень образное представление – ведь все видели, как строится дом. Однако современную науку, в том числе и химию, можно представить не только как бесконечно строящееся здание, но и в виде красочной мозаики, над которой в разных местах трудится множество мастеров. Одни начищают «свое» небольшое стеклышко до блеска и занимаются этим всю жизнь; иногда над одним стеклышком трудится несколько человек одновременно (при этом они вполне могут быть незнакомы друг с другом и даже говорить на разных языках). Другие заменяют старые, покрытые пылью и потускневшие детали на новенькие, только что изготовленные в их лабораториях, или же встраивают их на «пустые места». Третьи скептически оглядывают всю картину и пытаются давать рекомендации другим, что и как необходимо делать. Четвертые… В общем, жизнь в мастерской бьет ключом и каждый может найти себе в химии дело по душе.
   В этой книжке вы познакомитесь лишь с некоторыми «стеклышками» из огромной «химической мозаики». Одни из них появились сравнительно недавно, при жизни нынешнего поколения. Другим – много веков. Это – те самые фундаментальные химические понятия, которым время не грозит уничтожением. Даже если вы еще не начали изучать химию в школе, вы поймете все, о чем написано в этой книжке (ну, может быть, почти все). В ней даже нет химических формул, которые обычно пугают новичков. Если же вы в химии не новичок и любите эту науку, то тоже найдете здесь для себя много нового и интересного. А если у вас есть к тому же склонность к экспериментированию, желание все проверить, что называется, собственными руками, то эта книжка поможет вам провести некоторые не очень сложные эксперименты. Ведь недаром говорят, что лучше один раз увидеть, чем сто раз услышать. Особенно это относится к химии. Химия – наука прежде всего экспериментальная (по крайней мере такой она была последние 300 лет). И в химии особенно важно проделать своими руками хотя бы некоторые наиболее простые эксперименты, увидеть их результаты и постараться понять, почему наблюдается именно это явление, а не какое-либо другое. Понять же различные химические явления школьнику XXI века намного легче, чем его сверстнику из далекого прошлого, так как при изучении того или иного явления он может опираться на факты и теории, установленные и разработанные многими поколениями ученых. В память о них английский химик Джозеф Уильям Меллор (1865–1938), закончив в 1937 году, после пятнадцатилетней титанической работы, шестнадцатитомную энциклопедию по неорганической химии, написал с признательностью на титульном листе своего труда: «Посвящается рядовым огромной армии химиков. Их имена забыты, их работы остались…»
   Но начнем мы эту книжку с несколько неожиданного вопроса.

ИЗ ЧЕГО ВСЕ СОСТОИТ?

   На этот с виду простой вопрос люди разных профессий ответят по-разному Про стол и стул многие скажут, что они сделаны из дерева (а может быть, пластмассы; бывают и металлические стулья, неспециалисты скажут про них – «железные»). Бутылка или стакан сделаны из стекла; дешевая ложка или кастрюля – из алюминия, ложка получше – из нержавеющей стали, а ложка из богатого старинного дома – из серебра; гвоздь или иголка – из железа. Из железа сделан и автомобиль (но, конечно, кроме железа, в нем есть и стекло, и пластмасса, и много разных других материалов). Все это совершенно правильно. Хотя химик может и уточнить, сказав, что стул сделан из древесины, которая состоит в основном из целлюлозы. О стуле из пластмассы он может сказать – из какой именно пластмассы. Такое же уточнение он может сделать и в отношении пластмассовой бутылки. Например, увидев в нижней ее части выдавленную латинскими буквами надпись РЕТ, он сразу поймет, что это – сокращенное международное обозначение пластмассы (полиэтилентерефталата).
   Но даже специалисту не всегда легко так же просто сказать, из чего состоят, например, волосы или кожа человека, какое-нибудь лекарство или мазь в тюбике. Он может лишь сказать, что это сложная смесь – композит.
   А теперь вопрос потруднее: из чего состоит дерево, стекло, пластмасса, алюминий, железо, а также множество других металлов, их сплавов и неметаллов? Мало кто из людей задумывался раньше над такими «ненужными» вопросами. Атак ли они не нужны? Ведь если знать, «из чего сделаны» разные металлы, то, может быть, удастся превратить свинец в золото? И не так уж важно, что свинец темный, тусклый, легко плавится, а если его нагреть посильнее, он и вовсе превратится в «окалину» желтого цвета – в свинцовый глет или в красный свинцовый сурик (эти вещества издавна использовали для приготовления глазурей и красок). А вот золото – желтое, блестящее, расплавить его намного труднее, оно никогда не «портится», не превращается при нагревании в окалину, не растворяется в кислотах. Недаром алхимики (так называли средневековых химиков) считали золото «царем металлов». Они были потрясены, когда обнаружили «адскую смесь» из соляной и азотной кислот, которая оказалась способна растворить само золото! Эту смесь так и назвали – царская водка (рис. 1.1).


   Рис. 1.1. Рисунок из алхимического трактата: лев, символизирующий царскую водку, пожирает солнце – символ золота

   А главное – золото всегда было мерилом ценностей, обладание золотом означало обладание всем остальным. На небольшой кусочек золота, который даже ребенок спрячет в кулачке, можно было купить раба или целый воз хлеба. Свинец же был сравнительно дешев; его использовали даже для починки водопроводных труб, а иногда из свинца делали и сами трубы. Недаром по-английски водопроводчик – plumber (от латинского plumbum — свинец). Почему же золото надо «делать» именно из свинца?
   Ну, это древним было понятно: ведь свинец, как и золото, – тяжелый металл. (На самом деле свинец заметно легче: если кубик золота размером 1 дм3 весит 19,3 кг, то такой же кубик свинца – «всего лишь» 11,3 кг; правда, дошкольник, пожалуй, не поднимет ни тот ни другой.)
   Согласно иной «теории», золото надо было делать из ртути, которая тяжелее свинца: литр этой жидкости весит 13,6 кг.
   Так что полное ведро со ртутью обычному человеку даже от пола не оторвать!
   Однако несмотря на многовековые старания тысяч алхимиков (рис. 1.2), никому из них не удалось превратить свинец не то что в золото, но даже в очень похожее на свинец олово. И постепенно становилось все более очевидным, что превратить один металл в другой вообще невозможно. А почему?


   Рис. 1.2. Лаборатория алхимика. Старинный рисунок

   Чтобы превратить одно вещество в другое, например газ этилен в полимер, из которого делают полиэтиленовые пакеты и другие изделия, прежде всего надо знать, что общего у этих веществ, как они устроены. А потом уже думать о том, как их можно «перестроить». В такой перестройке и заключается сущность химических превращений. Тысячи и тысячи проведенных опытов убедили ученых в том, что превращения одних веществ в другие происходят не только в природе – их можно провести искусственно. Более того, можно получить искусственным путем такие вещества, которых в природе никогда не существовало. И таких веществ сейчас известно более 25 миллионов! Посмотрите на тот же прозрачный легкий пакет, который иногда неправильно называют «целлофановым», – он сделан на химическом заводе из замечательного водонепроницаемого вещества – полиэтилена; еще не так давно полиэтилен стоил дорого, и хозяйки, которые сейчас просто выбрасывают грязные пакеты, когда-то их стирали, а потом сушили на веревке, как белье. Люди старшего поколения помнят, как у станций метро стояли будки, где мастера, чьи руки были сплошь перепачканы пастой разных цветов, заправляли использованные стержни для шариковых ручек! Сегодня в это просто трудно поверить.
   Но не все превращения оказались возможными. Например, никто не смог из угля сделать серу. Еще в XVIII веке ученые убедились в том, что существуют химические элементы – самые простые вещества, которые друг в друга не превращаются. А в XX веке, когда стало понятно, как устроены атомы, это убеждение получило теоретическое объяснение. Но прежде должно было возникнуть и оформиться само понятие химического элемента.

Первые теории строения мира

   Первые теории о том, как устроены вещества, почему они такие разные и как могут превращаться друг в друга, появились более 2500 лет тому назад. В то время над этими вопросами размышляли философы; в переводе с греческого слово «философ» означает «любитель мудрости». Никаких опытов они не проводили, практическое применение знаний многих из них тоже мало интересовало. Главное для них было – как все происходит, и почему так, а не иначе. То есть они занимались тем же, чем занимаются современные физики и химики-теоретики. При этом древние философы считали, что до всего человек может дойти собственным умом, путем строгих логических рассуждений. И на этом пути они достигли удивительных, выдающихся результатов!
   С древних времен одним из главных вопросов, занимающих философов, был вопрос: из чего все состоит? Первым на него попытался ответить греческий философ Фале́с (640–550 до н. э.). Он полагал, что, поскольку одни вещества могут превращаться в другие, все они «сделаны» из одного и того же «первичного вещества» и являются только его разновидностями. Таким веществом Фалес считал воду, причем, конечно, не воду в реке, а воду как некую идеальную субстанцию, которая является «прародительницей» всего остального. Действительно, всякий знает, что чистая вода не имеет ни формы, ни цвета, ни запаха. Более того, она легко переходит из одного состояния в другое – замерзает в лед или превращается в пар. Много тысячелетий назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, весьма напоминающие чистый лед. Древние натуралисты так их и назвали – «кристаллос»; это слово происходит от греческого «криос» – «лед». Полагали, что лед, образующийся в горах, на сильном морозе, становится твердым как камень и теряет способность таять при нагревании. Один из самых авторитетных античных философов Аристотель (384–322 до н. э.) писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту». Римский поэт Клавдиан в 390 году уже новой эры то же самое описал красивыми стихами:
Ярой альпийской зимой лед превращается в камень.
Солнце не в силах затем камень такой растопить.

(Пер. М. Ильинского)
   Любопытно, что такой же ход рассуждений был и у мудрецов древнего Китая и Японии – лед и горный хрусталь обозначали там одним и тем же словом. Интересно, как в разных странах и в разное время людям приходят в голову одни и те же идеи! Со временем, конечно, стало ясно, что горный хрусталь и лед – различные вещества. Однако оба термина сохранились: «кристалл» – в физике, химии, минералогии, «хрусталь» – в стекольном деле, где хрусталем называют особое стекло, например, с добавками соединений свинца.
   Если вода может застыть в красивый твердый минерал, а также превратиться в пар, то почему она не может превратиться и во все остальное? Идея о воде как «первичном элементе» помогала объяснять единство вечно существующей материи: «Ничто не возникает из ничего, и ничто не исчезает, – писал греческий философ Анаксагор (ок. 500–428 до н. э.), – происходит только перераспределение тех вещей, которые существовали прежде». Это была очень глубокая и, по существу, правильная идея.
   Конечно, древние не знали, да и не могли знать, что же представляют собой эти первоначала. Не все соглашались с Фалесом. Были философы, считавшие, что первооснова всех вещей – воздух, который, сгущаясь, превращается в воду и землю, а из них возникает все остальное. Другие полагали, что первоэлементом является огонь – ведь он так переменчив, так непостоянен. Но почему должно быть только одно «первоначало», только один первичный элемент, из которого все и построено? Почему все «детали мирового конструктора» должны быть одинаковыми? Скорее всего, их больше – но сколько?
   Сейчас известно, что в природе существует около 90 различных «первоначал» – атомов. Но если бы об этом сказали грекам, они бы, скорее всего, возмутились: «Зачем в “конструкторе” так много лишних деталей! Достаточно всего нескольких!» Между тем мир очень сложен, он заключает в себе огромное множество различных веществ. Можно ли свести сложное к простому? Можно ли, исходя из нескольких «первоначал», построить все разнообразие веществ со всеми их свойствами? Это был ключевой вопрос науки. Сейчас ребенок, у кого есть хороший конструктор, скажет: «Да, можно – если в конструкторе есть детали нескольких сортов и этих деталей очень много, то из них можно построить все, что угодно!»
   Многие философы, и среди них Эмпедокл (ок. 400 – ок. 430 дон. э.) и Аристотель, считали, что «первичных начал» всего четыре – это «земля», «вода», «воздух» и «огонь». Эти слова взяты в кавычки, потому что «вода» у Аристотеля – это не знакомая всем жидкость, а, как у Фалеса, лишь носитель определенных качеств: влажности и холода. Чем больше в каком-нибудь теле «воды», тем оно холоднее и более влажное. Соединение элементов с противоположными свойствами невозможно: теплота не может соединиться с холодом, а влага с сухостью. По Аристотелю, свойства элементов комбинируются попарно (рис. 1.3): вода влажная и холодная, огонь сухой и горячий, воздух теплый и влажный, земля холодная и сухая.


   Рис. 1.3. Элементы Аристотеля в сочетании с разными «качествами»

   К этим четырем «земным элементам» Аристотель присоединил нематериальный, «эфирный» элемент, который проникает во все вещи – quinta essentia, т. е. «пятая сущность»; вот откуда возник термин «квинтэссенция», который означает самое главное, важное, наиболее существенное.
   Можно ли из четырех «первичных начал» и «эфира» построить все остальные тела? Аристотель и его последователи считали, что можно, если четыре «первичных начала» с помощью «пятой сущности» способны превращаться друг в друга. Так, вода может превращаться в воздух и землю, потому что их общим свойством является влажность. Таким образом появилась «химическая теория», показывающая, как одни вещества могут превращаться в другие.
   Великий греческий философ Платон (ок. 428 – ок. 348 до н. э.) сделал очень интересную вещь: он уподобил каждое «первоначало» правильному выпуклому многограннику. Таких многогранников существует всего пять, и их часто называют «Платоновыми телами» (рис. 1.4). Напомним, что правильным называется выпуклый многогранник, построенный из одинаковых правильных многоугольников. Например, из четырех равносторонних треугольников можно сделать тетраэдр – многогранник с четырьмя вершинами, четырьмя гранями и шестью ребрами, т. е. фигуру в форме пакета, в котором когда-то продавали молоко. Кстати, «тетра» по-гречески означает «четыре», а «эдра» – «поверхность, сторона». Из шести квадратов легко получается второе платоново тело – куб. Из восьми равносторонних треугольников состоит октаэдр, в переводе с греческого – «восьмигранник» (представьте себе две египетские пирамиды, сложенные вместе своими основаниями, – это и будет октаэдр). Из двенадцати правильных пятиугольников получается двенадцатигранник – додекаэдр. Икосаэдр («эйкос» по-гречески «двадцать») состоит из двадцати равносторонних треугольников. Других правильных многогранников не существует. Попробуйте склеить все эти фигурки из бумаги. Кстати, это не просто забава. Именно такой «детской игрой» занимались ученые, открывшие новый тип молекул, построенных из атомов углерода; они назвали их фуллеренами – по имени современного архитектора Роберта Бакминстера Фуллера, который строил купола из многогранников. За это открытие они в 1996 году получили высшую научную награду – Нобелевскую премию по химии. Самая симметричная и красивая молекула – бакминстерфуллерен – имеет 60 вершин и состоит из 20 шестиугольников и 12 пятиугольников. Конечно, эта фигура не является правильной (ведь в ней есть и пяти-, и шестиугольники), зато она выглядит точно так же, как современный футбольный мяч!


   Рис. 1.4. Пять правильных многогранников – платоновых тел: 1 – тетраэдр; 2 – октаэдр; 3 – икосаэдр; 4 – куб; 5 – додекаэдр

   Самое интересное, что Платон, пораженный совпадением количества правильных многогранников с числом «сущностей» природы, посчитал это равенство отнюдь не случайным. И он пришел к заключению, что огонь построен из «колючих» тетраэдров, воздух – из более «округлых» октаэдров, вода – из еще более «круглых» икосаэдров, а земля – из кубов, которые могут плотно прилегать друг к другу. Оставался еще додекаэдр, и Платон решил, что такую красивую и совершенную форму имеет весь мир – Вселенная!
   Далеко не все философы соглашались с таким представлением об устройстве мира. Так, Демокрит (ок. 460 – ок. 370 до н. э.) считал, что все тела состоят из множества мельчайших частичек, названных им атомами (в переводе – «неделимые»). Логично было предположить, что существуют различные «сорта» атомов с разными размерами и формой. Они могут сцепляться друг с другом, например, с помощью крючочков или как-нибудь иначе. Скомбинировав атомы разными способами, как детали в конструкторе, можно получать разные вещества, а также превращать одни вещества в другие. Считали, например, что золото и серебро «растут» под землей, когда атомы группируются в нужном порядке. Поэтому не удивительными кажутся попытки, предпринимавшиеся в течение многих веков, превратить неблагородные металлы в благородные.
   Учение о том, что все вещества состоят из мельчайших частиц, получило название атомистической теории. Эта теория – одно из наиболее важных, фундаментальных понятий в науке. Догадки древних, основанные лишь на размышлении, в принципе не так уж далеки от современных представлений: существует ограниченное число различных типов атомов (т. е. элементов), которые могут по-разному соединяться друг с другом, давая огромное разнообразие веществ с разными свойствами. А процесс перестройки взаимного расположения атомов составляет сущность химической реакции. Атомистическая теория была величайшим достижением человеческого разума. Очень образно о ней сказал лауреат Нобелевской премии по физике Ричард Фейнман (1918–1988): «Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это – атомная гипотеза (можно называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов – маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе… содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».
   Никаких реальных «доказательств» существования атомов у древних, конечно, не было и быть не могло – только рассуждения. Например такие: что будет, если, допустим, яблоко разрезать пополам? Сейчас ответ очевиден даже малому ребенку: получатся две половины яблока. А если каждую половину снова разрезать пополам? Получатся четвертинки. Потом – восьмушки, потом – шестнадцатые доли… Через некоторое время, скажете вы, придется взять увеличительное стекло и лезвие бритвы, потом – микроскоп и специальные инструменты. А потом?
   Те из вас, кто учился музыке, возможно, вспомнят основу музыкальной грамоты: целая по длительности нота делится на половинки, последние – на четверти, потом идут восьмые доли, шестнадцатые, тридцать вторые, очень редко – шестьдесят четвертые… Меньшими долями композиторы обычно не пользуются, так как их уже трудно «втиснуть» в нужный отрезок времени. О связи музыки и химии мы еще поговорим, а пока подумаем над таким вопросом: можно ли (хотя бы теоретически) создавать все более и более короткие звуки? И есть ли у этого процесса предел? Вопрос этот на самом деле очень непрост, и ответ на него также не очевиден, как и в случае с яблоком: возможно ли до бесконечности делить его на все более и более мелкие части, или когда-то наступит предел? Древнегреческий философ Левкипп (ок. 500–440 до н. э.) был, возможно, первым человеком на Земле, который две с половиной тысячи лет назад понял (рассуждая чисто логически), что процесс «разрезания яблока» должен рано или поздно прекратиться. Это произойдет тогда, когда мы дойдем до мельчайших частичек, из которых состоят не только яблоки, но и все остальные тела. Эти частички ученик Левкиппа – Демокрит назвал атомами. Демокрит считал, что существуют различные «сорта» атомов с разными размерами и формой. Именно этим объясняются различия в свойствах разных тел.
   Атомистический взгляд на мир очень образно и поэтично изложил древнеримский поэт и философ Тит Лукреций Кар (ок. 99–55 до н. э.), которого обычно называют просто Лукрецием. В своей поэме «О природе вещей» он ни разу не употребил слова «атом», хотя и был знаком с этим понятием. Вместо него он использовал более десятка синонимов: «начала», «первоначала», «семена вещей» и др. Некоторые из них («корпускула», «элемент») позднее стали научными терминами. Атомистическое учение Лукреция во многом совпадает с современными представлениями. И если бы последние два тысячелетия его поэму изучали во всех существовавших тогда учебных заведениях, история человечества могла пойти по совершенно иному пути.
   Теперь самое время ознакомиться с некоторыми строчками замечательной поэмы Лукреция.
   Прежде всего Лукреций предупреждает читателя, что «начала» так малы, что увидеть их нет никакой возможности. Однако размышления над природными процессами убеждают нас в том, что они все же существуют, а не являются плодом фантазии. Вот, почитайте выдержки из его поэмы в переводе Ф. А. Петровского:
…Начала вещей недоступны для глаза…
Существуют тела, которых мы видеть не можем.
Запахи мы обоняем различного рода,
Хоть и не видим совсем, как в ноздри они проникают.
И, наконец, на морском берегу, разбивающем волны,
Платье сырее всегда, а на солнце вися, оно сохнет;
Видеть, однако, нельзя, как влага на нем оседает,
Да и не видно того, как она исчезает от зноя.
Значит, дробится вода на такие мельчайшие части,
Что недоступны они совершенно для нашего глаза.
Так и кольцо изнутри, что долгое время на пальце
Носится, из году в год становится тоньше и тоньше;
Нам очевидно, что вещь от стиранья становится меньше,
Но отделение тел, из нее каждый миг уходящих,
Нашим глазам усмотреть запретила природа ревниво.

   Чем не современное объяснение атомной теории строения вещества? Лукреций уверен, что атомы, в отличие от видимых тел, не стареют, не разрушаются, а существуют в неизменном виде вечно и только переходят из одних тел в другие. При этом общее число атомов в мире постоянно:
…Существуют такие тела, что и плотны, и вечны:
Это – вещей семена и начала в учении нашем,
То, из чего получился весь мир, существующий ныне…
Первоначалам должно быть присуще бессмертное тело,
Чтобы все вещи могли при кончине на них разлагаться.
Пне иссяк бы запас вещества…
Первоначала вещей, таким образом, просты и плотны.
Иначе ведь не могли бы они, сохраняясь веками,
От бесконечных времен и досель восстанавливать вещи.

   А вот как Лукреций объясняет, каким образом из одних и тех же атомов могут получаться разные вещи: он проводит аналогию между порядком сочетания атомов, соединяющихся друг с другом, и букв, образующих множество разных слов:
Часто имеет еще большое значенье, с какими
И в положеньи каком войдут в сочетание те же
Первоначала и как они двигаться будут взаимно.
Те же начала собой образуют ведь небо и землю,
Солнце, потоки, моря, деревья, плоды и животных…
Даже и в наших стихах постоянно, как можешь заметить,
Множество слов состоит из множества букв однородных,
Но и стихи, и слова, как ты непременно признаешь,
Разнятся между собой и по смыслу и также по звуку.
Видишь, как буквы сильны лишь одним измененьем порядка.
Что же до первоначал, то они еще больше имеют
Средств для того, чтоб из них возникали различные вещи.

   Лукреций уверен, что многообразие тел можно объяснить не только различным способом соединения атомов между собой, но и тем, что сами атомы отличаются друг от друга. Действительно, интересно ли играть с конструктором, в котором все детали одинаковы? (На самом деле такие «конструкторы» существуют – это кубики, но ведь это игра для самых маленьких.)
Что же до первоначал, то они еще больше имеют
Средств для того, чтоб из них возникали различные вещи,
Нет ни одной из вещей, доступных для нашего взора,
Чтоб она из начал состояла вполне однородных;
Нет ничего, что различных семян не являлось бы смесью.

   Поразительно, но Лукреций предполагал, по-видимому, делимость атомов! Во всяком случае, именно так можно понимать следующие строчки из его поэмы:
Предположи, например, что тела изначальные будут
Три или несколько больше частей заключать наименьших;
Если затем ты начнешь эти части у данного тела
Переставлять или снизу наверх, или слева направо,
То обнаружишь тогда, сочетания все их исчерпав,
Все изменения форм, что для этого тела возможны;
Если ж иные еще получить ты желаешь фигуры, —
Части другие тебе прибавить придется.

   А вот еще один довод Лукреция в пользу существования мельчайших частиц материи, находящихся в постоянном движении:
Вот посмотри: всякий раз, когда солнечный свет проникает
В наши жилища и мрак прорезает своими лучами,
Множество маленьких тел в пустоте, ты увидишь, мелькая,
Мечутся взад и вперед в лучистом сиянии света.
Знай же: идет от начал всеобщее это блужданье.
Первоначала вещей сначала движутся сами,
Следом за ними тела из мельчайшего их сочетанья,
Близкие, как бы сказать, по силам к началам первичным,
Скрыто от них получая толчки, начинают стремиться
Сами к движенью, затем побуждая тела покрупнее.
Так, исходя от начал, движение мало-помалу
Наших касается чувств и становится видимым также
Нам и в пылинках оно, что движутся в солнечном свете,
Хоть незаметны толчки, от которых оно происходит…
Первоначала вещей уносятся собственным весом
Или толчками других.

   Современная наука не подтвердила этот вывод древнего философа: пылинки в луче солнца слишком велики, чтобы молекулы воздуха могли на них действовать, и «пляшут» они под влиянием потоков воздуха. Но, наблюдая значительно более мелкие пылинки под микроскопом, можно увидеть их «пляску», действительно вызванную ударами молекул. Так что в принципе Лукреций правильно описал явление, открытое английским ботаником Робертом Броуном (1773–1858) в 1827 году и теоретически объясненное только в XX веке, в том числе в работе знаменитого физика Альберта Эйнштейна (1879–1955).
   Теоретические построения древнегреческих философов были первыми научными построениями. На их основе через много веков зародились современные науки, в числе которых была и химия. Без древней атомистической теории не только химия, но и все естественные науки не могли бы развиваться. Однако на протяжении еще многих столетий лишь малая часть философов и ученых разделяла гипотезу о существовании атомов. Ну а все, что касалось размеров атомов, их массы, формы и т. п., оставалось тайной за семью печатями, и не было даже надежды, что эту тайну удастся раскрыть.

Что такое элемент

   Лукреций, написавший свою поэму на латинском языке, часто использовал слово principium, которое означает «основа, первоначало». Есть в латинском языке и другое близкое понятие: elementum. Оно означает «вещество, стихия», а во множественном числе (elementa) – «основания, основные начала». В древности было распространено изречение: «Как слова состоят из букв, так и тела – из элементов». Любопытно, что по одной из версий слово elementum происходит от названия следующих по алфавиту латинских согласных: l, m, n el» – «em» – «en») и окончания t («tum»).
   Современное понятие «элемент» появилось в XVII веке. Английский ученый Роберт Бойль (1627–1691) определял элементы не умозрительно, как древние, а чисто практически. Рассуждал он примерно так: «Если вещества невозможно разложить на более простые, значит они являются элементами и состоят из атомов только одного сорта. (Сейчас такие вещества называют простыми.) Если же вещества разлагаются под действием кислот или при сильном нагреве, значит эти вещества состоят из разных элементов и являются сложными веществами».
   В те времена считать какое-либо вещество элементом можно было только условно; ведь никто не сомневался в том, что со временем химики сумеют разложить на составные части некоторые из тех веществ, которые признавались простыми. Вот что писал по этому поводу французский химик Антуан Лоран Лавуазье (1743–1794) в своем учебнике «Элементарный курс химии», изданном в 1789 году: «Все вещества, которые мы еще не смогли никаким способом разложить, являются для нас элементами; но не потому, что мы могли бы утверждать, что эти тела, рассматриваемые нами как простые, не состоят из двух или большего числа начал, но… потому, что мы не имеем никаких средств их разделить, эти тела ведут себя, с нашей точки зрения, как простые, и мы не должны считать их сложными до тех пор, пока опыт или наблюдения не докажут нам этого».
   Сам Бойль, например, полагал, что металлы не являются простыми веществами и потому возможны превращения одних металлов в другие. Такого же мнения придерживался и выдающийся английский физик Исаак Ньютон (1643–1727), потративший массу времени и здоровья на алхимические опыты.
   Со временем химики достигли больших успехов в изучении различных превращений. Но у них еще не было достаточно надежных методов, которые бы позволяли различать простые и сложные вещества. Отсюда возникали ошибки даже у известных ученых. Сам Лавуазье в своем учебнике привел таблицу примерно из 30 простых тел. Среди них были действительно простые вещества (газы – кислород, азот, водород; металлы – серебро, золото, медь, олово, железо, ртуть, никель, марганец и др.; неметаллы – сера, фосфор, углерод, хлор). А были и сложные вещества, о чем тогда еще не было известно (например: известь, глинозем, кремнезем). Воду, например, долго считали элементом, пока Лавуазье не опроверг это мнение и не написал в 1783 году сочинение, которое он назвал «Статья, имеющая целью доказать, что вода не простое вещество, не элемент в собственном смысле слова, но что она может быть разложена и получена вновь». Оказалось, что вода образуется при горении многих веществ, например водорода. А с помощью раскаленного железа воду можно снова разложить на водород и кислород (Лавуазье пропускал для этого пары воды через раскаленный ружейный ствол).
   Основу современной атомистики заложил английский ученый Джон Дальтон (1766–1844). Свою теорию он вывел исходя из сделанного им открытия. Оказалось, что многие элементы могут соединяться друг с другом в разных соотношениях, при этом образуются разные вещества. А самое главное – в этих веществах массы элементов кратны друг другу и соотносятся как небольшие числа. Например, углерод может соединяться с кислородом в массовых соотношениях 3:4 или 3:8 (при этом образуется либо угарный газ, либо углекислый); сера соединяется с кислородом в соотношении 1:1 или 2:3, азот с кислородом – в соотношении 7:4, 7:8, 7:12, 7:16 и 7:20 (правда, Дальтону были известны не все эти соединения). Платон, наверное, долго ломал бы голову, соображая, как эти странные соотношения можно подогнать к его теории строения мира. Дальтон же рассудил просто. Существуют атомы углерода, кислорода, серы, азота, причем атомы каждого элемента имеют свою массу. В разных веществах атомы соединяются друг с другом в строго определенных соотношениях. Например, если один атом азота «весит» 7 условных единиц, а один атом кислорода – 8 таких же единиц, то соотношение атомов в разных оксидах азота (так называются соединения азота с кислородом) будет: 2:1, 1:1, 2:3, 1:2 и 2:5.
   Рассуждая таким образом и основываясь на экспериментах, Дальтон составил первую таблицу атомных масс. Атомы разных элементов он обозначил разными фигурками, запомнить которые было довольно трудно. Позднее шведский химик Йенс Якоб Берцелиус (1779–1848) предложил очень простой способ для обозначений атомов – по первой букве названий элементов на латинском языке. Если же буквы у разных названий оказывались одинаковыми, тогда он добавлял вторую букву. Например, водород на латыни – Hydrogenium (в переводе – «рождающий воду»), знак элемента Н; углерод – Carboneum, знак С; кислород – Oxygenium («рождающий кислоты»), знак О; азот – Nitrogenium («рождающий селитру»), знак N и т. д. Теперь различные оксиды азота можно было записать совсем просто: N2O, NO, N2O3, NO2 и N2O5. На таком «языке» говорят сегодня все химики мира; написав формулы, китайский химик легко поймет норвежского, хотя норвежец может не знать ни одного слова по-китайски, и наоборот.
   Помимо аргументов, основанных на представлениях о кратных соотношениях, в пользу атомистического учения приводились и другие доводы. Например, существование красивых кристаллов разной формы – простой (как у поваренной соли, кристаллы которой образуют кубики) или сложной (рис. 1.5) – можно было объяснить тем, что они построены из атомов, которые соединены друг с другом в пространстве по определенным правилам.


   Рис. 1.5. Кристаллы разной формы: 1 – каменная соль; 2 – гранат; 3 – алмаз; 4 – квасцы; 5 – берилл; 6 – турмалин; 7 – «правая» форма кварца; 8 – «левая» форма кварца; 9 – медный купорос

   Дальтон, чтобы его теория была понятной и наглядной, демонстрировал на своих лекциях разноцветные кубики, которые символизировали атомы разных элементов. Из этих кубиков, подбирая их в нужном количестве, он составлял различные химические соединения. Не все слушатели хорошо понимали суть его теории. Когда одного из студентов спросили, что такое атомы, он ответил: «Атомы – это разноцветные деревянные кубики, которые мистер Дальтон показывает на лекциях…»
   Массы атомов Дальтон выражал в относительных единицах – ведь он не мог взвесить отдельный атом, который так мал, что не виден даже в микроскоп! Можно было бы взвесить кусочек вещества побольше, но тогда для определения массы одного атома надо было точно знать, сколько атомов в этом кусочке. Во времена Дальтона этого не знали. Позднее химики и физики определили, сколько атомов содержится, например, в одном миллиграмме золота – едва заметной маленькой крупинке. Оказалось – астрономическое число: 3·1018 (т. е. 3, умноженное на 10 с восемнадцатью нулями)! Сумели построить и приборы, которые позволили разглядеть отдельные атомы (рис. 1.6). Теперь уже никто не вправе усомниться в том, что атомы существуют на самом деле! Правда, значение греческого слова «атомос» уже не соответствует современным представлениям об атоме как о неделимой частице: атомы состоят из более мелких «деталей» – протонов, нейтронов и электронов, а есть и еще более «элементарные» – кварки. Но этот «конструктор» уже не для химиков – им пользуются физики для «конструирования» казавшихся ранее элементарными частиц – протонов и нейтронов.


   Рис. 1.6. На этой не очень четкой фотографии, сделанной с помощью электронного микроскопа, видны выстроившиеся в ряды атомы элемента ниобия

   В силу того, что никакие химические реакции не способны изменить ядро атома, невозможно химическими методами превратить один атом в другой. Вот почему не переходят друг в друга и химические элементы. Это как в конструкторе: если в нем очень много разных деталей, то из них можно собрать множество сложных конструкций. Но невозможно одну деталь превратить в другую, например кубик – в уголок. Поэтому сейчас только чудаку или совершенно дремучему человеку может прийти в голову идея превратить одно простое вещество в другое (например, свинец в золото, как это пытались в течение сотен лет сделать алхимики). И как мастер может распилить детали и из их частей склеить, спаять или сварить детали другой формы, так и физики сейчас умеют из одних атомов получать другие, правда, не любые. Золото из свинца они вряд ли получат, а вот из ртути, пожалуй, смогут (у ртути заряд ядра атома всего лишь на единицу больше, чем у золота). Однако осуществлять такие чудесные превращения они могут, как правило, лишь с небольшим числом атомов. Так что один грамм «искусственного» золота будет стоить, вероятно, больше, чем тысячи тонн «обычного» золота. Именно по этой причине теперь ни у кого не возникает желания обогатиться, превратив неблагородный металл в золото…
   Большинство окружающих нас веществ являются сложными веществами, построенными из нескольких элементов. Например, вода состоит из атомов водорода и кислорода, поваренная соль – из атомов натрия и хлора, сахар – из атомов углерода, водорода и кислорода (поэтому сахар относят к углеводам), витамин В12 – из атомов углерода, водорода, кислорода, азота, фосфора и кобальта и т. д.
   На практике понятие простого вещества, как и многие другие химические понятия, носит условный характер. (Все же химия – не математика!) Ведь «железный» гвоздь сделан вовсе не из чистого железа, а из низкоуглеродистой стали, содержащей небольшое количество углерода. Чистое железо очень мягкое и почти никогда не используется. То же можно сказать про свинцовую оболочку кабеля, серебряную вилку, алюминиевую ложку – все они представляют собой сплавы разных металлов, хотя свинца, серебра и алюминия в них больше всего. Например, «серебряные» полтинники, которые были отчеканены в нашей стране в 1921–1927 годах в количестве почти 150 миллионов, и потому их сохранилось довольно много, содержат только 90 % серебра, остальное – медь.
   Вообще число относительно чистых простых веществ, с которыми человек сталкивается в повседневной жизни, невелико. Из металлов это, прежде всего, медь и алюминий, из которых сделаны электрические провода (примеси снижают электропроводность). Раскаленный волосок электрической лампочки – практически чистый, очень тугоплавкий металл вольфрам, а тоненькие подвески с крючками на концах, которые одним концом впаяны в стекло, а другим поддерживают вольфрамовую нить, сделаны из тугоплавкого металла молибдена. Тонкий защитный слой на консервной банке – практически чистое олово, а красивые крупные кристаллы на стенках и дне нового «железного» ведра – это цинк. В некоторых магазинах можно увидеть очень дорогие юбилейные монеты из платины, палладия, золота, сделанные из металлов высокой чистоты (степень чистоты на них, как правило, указана и может достигать 99,9 %). В медицинских градусниках используют единственный жидкий при 20 °C металл – ртуть. Многие металлические изделия покрывают хромом или никелем, которые придают предметам привлекательный блеск. Вот, пожалуй, и все чистые металлы, встречающиеся в быту. Остальные – это сплавы, которых огромное множество: латунь, бронза, томпак, баббит, мельхиор, нейзильбер, дуралюминий, силумин, инвар, платинит, нихром, константан – всех не перечислить…
   Из неметаллов в быту в чистом виде встречается сера (ее используют для борьбы с вредителями растений), углерод (например, в виде сажи), гелий (им наполнены «летучие» воздушные шарики, а раньше для этого использовали более дешевый, но горючий водород), криптон (в электрических «криптоновых» лампочках, отличающихся при той же мощности меньшим размером и грибовидной формой). Конечно, если покопаться в микросхеме компьютера или телевизора, возможно, найдутся маленькие кристаллы чистого кремния и германия.

Из чего сделаны атомы

   Итак, к концу XVIII – началу XIX века благодаря работам Михаила Васильевича Ломоносова (1711–1765), А. Л. Лавуазье, Уильяма Праута (1785–1850), Амедео Авогадро (1776–1856) и других ученых гипотеза о существовании атомов и молекул начала приобретать черты теории, которая могла бы принести огромную практическую пользу. Однако многие ученые, в том числе и выдающиеся, не поняли этого. Вот несколько примеров. Крупнейший французский химик XIX века Марселен Бертло (1827–1907) писал: «Понятие молекулы, с точки зрения наших знаний, неопределенно, в то время как другое понятие – атом – чисто гипотетическое». Еще определеннее высказался известный французский химик Анри Этьен Сент-Клер Девилль (1818–1881): «Я не допускаю ни закона Авогадро, ни атома, ни молекулы, ибо я отказываюсь верить в то, что не могу ни видеть, ни наблюдать». А немецкий химик Вильгельм Оствальд (1853–1932), лауреат Нобелевской премии, один из основателей физической химии, еще в начале XX столетия решительно отрицал существование атомов! В своем трехтомном учебнике химии он ни разу даже не упомянул о них.
   Теперь о том, что мир построен из атомов, знают даже школьники младших классов. Ученые получили довольно много сведений о строении различных атомов и молекул, об их форме и размерах. Еще более важными оказались знания, относящиеся к явлениям, которые происходят при «изменении форм» различных веществ, или, выражаясь современным языком, при изменении взаимного расположения атомов, когда они объединяются в более крупные частицы – молекулы, состоящие из одинаковых или разных атомов. С точки зрения современной науки взаимное расположение атомов в молекулах, а также взаимное расположение молекул определяют свойства веществ, о чем догадывались еще древние. А процесс перестройки взаимного расположения атомов составляет сущность химической реакции.
   Нелегкий путь становления теории строения вещества на основе атомистических представлений можно проследить на примере изменений, которые претерпела периодическая таблица элементов Д. И. Менделеева.
   Периодическая таблица начинается с самого легкого элемента – водорода. Некоторые ученые полагали, что все химические элементы произошли от самых простых атомов. В 1815 году английский химик Уильям Праут выдвинул гипотезу, согласно которой атомы всех химических элементов «построены» из атомов водорода. Если массу атома водорода принять за единицу, то атомные массы всех остальных элементов должны в соответствии с гипотезой Праута в целое число раз превышать массу атома водорода и потому выражаться целыми числами. Эти числа (их называют относительной атомной массой) действительно были целыми для ряда известных на то время элементов.
   Во второй половине XIX века отдельные ученые попытались обосновать гипотезу Праута, но у них ничего не получилось, о чем достаточно определенно написал уже знаменитый в то время Д. И. Менделеев: «Все подобные мысли… должно относить к области, лишенной какой-либо опытной опоры». То есть на тот момент ученые не располагали надежными методами проверки истинности гипотезы Праута. Кстати, в первой таблице химических элементов, составленной Д. И. Менделеевым в 1869 году, было немногим более 60 элементов, причем атомные массы 50 из них, или у подавляющего большинства, приводились в целых числах. Но массы-то остальных 13 элементов были дробными! В чем тут дело? Сторонники гипотезы Праута считали, что просто атомные массы этих элементов были определены недостаточно точно. Ведь определить экспериментально относительную атомную массу элемента с высокой точностью в XIX веке было делом трудным; некоторые химики годами работали над этой задачей. Между прочим, сам Менделеев не был уверен в точности всех атомных масс, значениями которых он располагал. В своей первой таблице он в этих случаях ставил рядом с символом элемента знак вопроса. Так, на месте золота в этой таблице стоит Au = 197?
   Однако атомные массы некоторых элементов, например, меди (63,4) или хлора (35,5), настолько сильно отличались от целых чисел, что ошибками эксперимента объяснить это было невозможно. Более того, результаты экспериментов как бы в насмешку над гипотезой Праута свидетельствовали: чем точнее становились измерения, тем у большего числа элементов обнаруживались «отклонения». Так, в последний год жизни Д. И. Менделеева шведский ученый Иоганн Ридберг (1854–1919), чьим именем названа одна из физических констант, опубликовал таблицу элементов, в которой впервые каждому элементу был присвоен соответствующий порядковый номер. В этой таблице оказалось уже 69 элементов, из которых лишь у 21 атомная масса была выражена целым числом. Любопытно, что в современной таблице Менделеева нет ни одного (!) элемента со строго целочисленной атомной массой. Объясняется это разными причинами. Одна из них, очень важная, была обнаружена английским ученым Френсисом Уильямом Астоном (1877–1945) в 1919 г.
   Раньше считалось, что атомы одного и того же химического элемента во всем одинаковы. Астон впервые доказал, что это не так. Они могут отличаться по массе, хотя с химической точки зрения ведут себя сходным образом. Другими словами, Астон открыл, что у элементов могут быть «близнецы-братья», но одни из них чуть полегче, другие потяжелее. Этих близнецов назвали изотопами, так как в таблице Менделеева им отвели одно и то же место (по гречески «изос» – «равный, одинаковый», «топос» – «место»). Из встречающихся в природе элементов (а их почти 90) только у 20 нет «родственников» – это элементы-одиночки. Другим же повезло больше, например у олова их целых 10! Есть изотопы и у самого легкого в природе элемента – водорода, и у самого тяжелого – урана.
   После того как было доказано существование изотопов, стало понятно, почему элементы с целочисленной атомной массой встречаются гораздо реже, чем с дробной. Например, у меди было обнаружено два изотопа с атомными массами, очень близкими к 63 и 65. Легких атомов меди в природе больше – их 69 %, а тяжелых меньше – 31 %. Поскольку оба изотопа и в металлической меди, и во всех ее соединениях равномерно перемешаны, не удивительно, что измерения всегда давали усредненное значение атомной массы меди – примерно 63,5.
   В XX веке, когда стало известно, из чего состоят атомы, появилось четкое и вполне определенное понятие химического элемента. Элемент – это совокупность атомов, которые устроены примерно одинаково. В центре атома – ядро, вокруг ядра движутся отрицательно заряженные электроны. Ядро состоит из положительно заряженных протонов и не имеющих заряда нейтронов и потому несет положительный заряд. В нейтральном атоме число протонов в ядре равно числу электронов. Главное, что отличает один элемент от другого, – это заряд ядра: у всех атомов данного элемента этот заряд одинаковый (одинаковое число протонов). Например, у всех атомов золота в ядре 79 протонов, а у всех атомов свинца – 82. Атомы самого легкого элемента водорода состоят всего из одного протона и одного электрона. А в ядрах самого тяжелого на Земле элемента урана уже 92 протона. Число же нейтронов в ядрах атомов данного элемента может быть переменным. Например, у 99,3 % атомов урана в ядре 146 нейтронов, а у оставшихся 0,7 % – на три нейтрона меньше; если выделить в чистом виде несколько килограммов данного изотопа, то этого количества будет достаточно для осуществления ядерного взрыва! (Есть еще, правда, очень редкая разновидность атомов урана со 142 нейтронами в ядре, но таких атомов всего 0,0055 %.)

Химия и нумизматика

   А теперь поговорим о том, как удалось установить процентный состав двух изотопов меди. Наглядно это можно показать на примере разновидностей монет одного достоинства, отличающихся массой. В 1993 году в России были выпущены 50-рублевые монеты из желтого медного сплава массой 6,1 г. Вскоре вместо них начали чеканить такие же с виду монеты, но более дешевые: их делали из стали и лишь сверху покрывали тонким слоем медного сплава. Стальные монеты были немного легче (5,3 г), но внешне они почти ничем не отличались от своих предшественниц (даже годом чеканки), как не отличаются по химическим свойствам два сорта атомов меди. Будем считать, что у нас было два «изотопа» 50-рублевых монет.
   Примерно к 1996 году оба «сорта» монет, находившихся в обращении, равномерно перемешались, так что доля легких и тяжелых монет стала постоянной. Один нумизмат решил выяснить, какова же доля монет каждого типа. Он собрал у знакомых целый мешочек 50-рублевых монет, взвесил их и разделил общую массу на число монет; получилась «средняя» масса одной монеты – 5,54 г. Можно ли теперь узнать долю легких и тяжелых монет?
   Будем рассуждать так: пусть у нас имеется 100 монет, среди которых есть и легкие, и тяжелые (по условию их соотношение не зависит от числа монет). Общая масса всех 100 монет равна 554 г. Если бы все эти монеты были «тяжелой разновидности», то их общая масса была бы равна 610 г, что на 56 г (610–554) больше действительной. Почему так? Потому что не все монеты тяжелые: есть среди них и легкие. Замена одной тяжелой монеты на одну легкую приводит к уменьшению общей массы на 0,8 г (6,1–5,3). Нам же надо уменьшить массу на 56 г. Следовательно, имеется 70 легких монет (56:0,8). Это и есть ответ: 70 % легких монет, 30 % тяжелых.
   Точно так же мы можем рассуждать и в случае изотопов меди: известна средняя атомная масса меди (ее определили химики, анализируя различные соединения меди), а также массы легкого и тяжелого изотопов меди (эти массы определили физики, используя свои, физические, методы).
   Интересно, что точно такая же история с монетами произошла несколько раньше в США. В 1964 году из-за подорожания серебра 10-центовые монеты («даймы»), которые прежде чеканились из серебряного сплава, стали делать из медно-никелевого (причем их внешний вид практически не изменился).
   Но дорожает не только серебро. Самая мелкая медная монета США – 1 цент («пенни») с изображением Линкольна тоже претерпела изменения в октябре 1982 года. Монетки, выпущенные ранее, изготовлялись из меди с добавлением 5 % цинка. А новые центы только снаружи покрыты медью, внутри же они цинковые. Можно провести такой забавный опыт: слегка соскоблить надфилем краешек монеты и положить ее в разбавленную соляную или серную кислоту. В течение нескольких дней кислота будет все глубже и глубже проникать в монету, постепенно выедая ее цинковое нутро и не затрагивая оболочку, пока не останется легкий медный чехольчик. Точное взвешивание покажет, что в новых монетах общее содержание меди снижено с 95 до 2,5 % – солидная экономия для такого массового производства. Так как цинк не только дешевле, но и легче меди, масса центов существенно уменьшилась – примерно с 3,1 до 2,5 г. Этот эксперимент описывается в американском учебнике по химии и проводится на уроках во многих американских школах. Практическая неотличимость на вид новых и старых центов делает их уникальным учебным пособием для демонстрации на уроках: цинковые и медные центы можно рассматривать как отличающиеся массой изотопные разновидности одного и того же «элемента», причем путем взвешивания кучи нерассортированных монет можно определить содержание в ней каждого «изотопа», если известно общее число монет.
   Интересно, что очень похожая задача (только не с изотопами и монетами, а с двумя сортами сукна) приведена в рассказе А. П. Чехова «Репетитор». Вот эта задача.
   «Купец купил 138 аршин черного и синего сукна за 540 рублей. Спрашивается, сколько аршин купил он того и другого, если синее сукно стоило 5 рублей за аршин, а черное – 3 рубля?» Фактически это та же самая задача, что и в случае разновидностей монет или изотопов меди. Так что вы теперь сами легко ее решите.

Химики соревнуются с природой. Химический конструктор

   Всего в природе найдено 90 различных элементов, и еще более 20 получено искусственным путем. Из этих нескольких десятков «кирпичиков» и состоят все окружающие нас тела – воздух, которым мы дышим; бумага, на которой напечатана эта книга, и красители в рисунках и самих буквах; глаза, которые читают этот текст, и клетки мозга, которые анализируют, хорошо ли он написан… На самом деле живые организмы состоят из еще меньшего числа элементов, чем объекты неживой природы. В книге американского ученого Глена Сиборга (он участвовал в создании многих искусственных элементов, а один из элементов даже назван его именем) есть забавная картинка. На фотографии изображен мужчина средних лет в белой рубашке и в галстуке, а на столе перед ним – куча баночек и несколько сосудов с газами. Подпись же гласит: «Здесь изображен известный химик Бернард Харви в двух различных вариантах – в одном случае он в своем нормальном состоянии, в другом – расщеплен на составные элементы».
   Люди, не знающие химии, часто удивляются, когда до них доходит информация о том, что из сотни с лишним известных химических элементов в состав растений и животных входит всего два десятка. Действительно, если принять, что Харви весил 70 кг, то на столе должны были бы находиться: 45,5 кг кислорода, 12,6 кг углерода, 7 кг водорода, 2,1 кг азота, 1,4 кг кальция, 700 г фосфора, 260 г калия, 175 г серы, по 100 г натрия и хлора, 30 г магния, 3 г железа и в очень малых количествах несколько других элементов (например, иода – всего 0,03 г, а марганца – 0,01 г). Как же природа ухитрилась из небольшого числа «составных частей» создать такое чудо, как мыслящий человек? А также кустик земляники (и ее запах!), гигантское дерево эвкалипт, крошечного муравья и огромного кита, миллионы других видов растений и животных…
   Однако подобных «чудес» в мире немало. Разве не удивительно, что всего 12 нот хроматической гаммы дают бесконечное число разнообразных мелодий – от бесхитростной песни монгольского пастуха до мотивов «Спящей красавицы» П. И. Чайковского?! Разве не удивительно, что всего 16 белых и 16 черных шахматных фигур способны создать огромное разнообразие шахматных комбинаций – начиная от простейшего «детского мата» в два хода и кончая гениальными творениями лучших шахматистов мира?! Наконец, разве не удивительно, что из небольшого числа букв (в венгерском алфавите их 38, в русском – 33, в латинском – 26, в греческом – 24) можно составить бесконечное число слов, выражений и литературных произведений – от «Чижика-пыжика» до «Войны и мира» Л. Н. Толстого.
   Так и в химии. Из ограниченного числа элементов, соединенных друг с другом в разных сочетаниях, построены все вещества. Возможности разных сочетаний элементов можно проиллюстрировать на таком примере. Во второй половине XX века ученые выяснили, что для записи всей наследственной информации живого организма достаточно всего нескольких химических элементов! А информация эта, «записанная» в живой клетке, определяет, что именно вырастет из этой клеточки, неразличимой для невооруженного глаза: сибирский кедр, морской конек или человек. Как же удается записать эту информацию?
   Аборигены (коренные жители) Америки много веков назад изобрели «узелковую письменность»: к длинной веревке они привязывали шнурки с узелками различной формы. Таким образом они могли передавать разнообразную информацию. Возьмем теперь длинную «веревку», построенную из соединенных друг с другом атомов углерода (эти атомы легко соединяются в цепочки любой длины). Получится молекула, которая не несет никакой информации. Кстати, именно из таких молекул состоит полиэтилен, применяемый для изготовления пакетов, и парафин, из которого делают свечки. Разные свойства полиэтилена и парафина связаны в основном с разной длиной молекул-цепочек. Но если в разных местах этой молекулы присоединить по бокам атомы других элементов (в том числе и углерода), можно получить осмысленное «сообщение». Чтобы его «прочитать», надо знать, из каких элементов состоят боковые группы (кстати, «боковая группа» – обычный химический термин), каково их строение и по каким правилам они присоединяются к центральной нити. Именно по этому принципу природа создала «текст» с определенным биологическим смыслом – его называют генетическим кодом. И вряд ли здесь было бы возможно какое-то другое решение.
   Чтобы собрать из готовых деталей какой-либо механизм, надо знать, как он устроен. Именно такая задача в первую очередь стояла перед химиками, которые захотели искусственно получать различные соединения. Химики всегда стремятся сделать что-то совершенно новое, никогда и никем не виданное, в природе не встречающееся (например, даже простейший полимер полиэтилен в природе сам по себе никогда не образуется). А зачем химикам все это было нужно? Ведь далеко не всегда очевидно, что полученное ими новое вещество принесет хоть какую-нибудь пользу! Прежде всего, создавать новые вещества очень интересно! Зачем ребенок строит из песка или из деталей конструктора башни и крепости? Ведь он прекрасно знает, что они ненастоящие. Но – интересно! Химики в этом отношении похожи на детей – им тоже очень интересно «построить» в колбе сложную конструкцию из атомов, синтезировать какое-нибудь вещество с необычными свойствами. Но дело не только в интересе. Многие вещества, которых в природе мало или вообще нет, оказались совершенно необходимы людям. Среди них – удобрения, необходимые для повышения урожайности сельскохозяйственных культур: без них сельское хозяйство уже не смогло бы прокормить выросшее во много раз население Земли. Химики получили также множество разнообразных лекарственных веществ, чтобы избавлять людей от болезней. Или – взрывчатые вещества, с помощью которых, к сожалению, этих же людей можно убивать…
   Чтобы получить какое-либо новое вещество или вещество, уже созданное природой, надо знать, какие атомы и в каких пропорциях содержатся в этом веществе. Это – задача аналитической химии, о которой еще будет отдельный рассказ. Но этого мало. Требуется еще установить, в каком порядке должны быть соединены атомы в веществе, т. e. каково его строение. А от строения вещества (порядка соединения атомов) очень сильно зависят его свойства. Например, в молекуле аминокислоты аланина содержатся 3 атома углерода, 7 атомов водорода, 1 атом азота и 2 атома кислорода (химики записывают такую формулу в виде С3H7NO2, обозначая буквами сорт атомов и цифрами их количество в молекуле). Аланин встречается во всех организмах в свободном виде и в составе белков; это бесцветные кристаллы сладкого вкуса. Но те же атомы и в таком же количестве находятся и в молекуле искусственно полученного вещества пропилнитрита – летучей, взрывчатой, очень ядовитой жидкости, пары которой при вдыхании вызывают резкое расширение сосудов, снижение кровяного давления и учащение сердцебиения (похожим действием обладает и всем известный нитроглицерин, так как его строение очень напоминает строение пропилнитрита). Такое существенное различие в свойствах двух соединений одинакового состава объясняется тем, что указанные атомы соединены в этих веществах по-разному: в аланине атом азота соединен с двумя атомами водорода и одним атомом углерода, а в пропилнитрите – с двумя атомами кислорода.
   Допустим теперь, что химик узнал, какие элементы и в каком соотношении содержатся в данном веществе; узнал он также, в каком порядке они соединены друг с другом. Сможет ли он теперь самостоятельно получить такое же вещество? Эта задача похожа на такую: человеку сказали, какие детали и в каком количестве содержатся в его телевизоре или автомобиле, а также в каком порядке они соединены друг с другом. Сумеет ли он, воспользовавшись этой информацией, самостоятельно сделать точно такой же телевизор или автомобиль? Понятно, что это зависит от мастерства человека, его знаний и возможностей. Если он должен сначала сам найти нужные руды, выплавить из них разные металлы… ну и так далее, то вряд ли он что-то успеет за всю свою жизнь. Если же это опытный механик, и у него есть все готовые детали, а также хорошие помощники, то за месяц-другой, глядишь, у него что-то и получится.
   Примерно такая же ситуация и у химиков. Первые химики все реактивы готовили для себя сами и до «большой» химии было еще далеко. Сначала должны были заработать химические заводы, производящие тысячи разнообразных химических веществ – «заготовок» для будущих искусственных изделий. Одновременно должны были открыться химические лаборатории, в которых бы молодые химики учились премудростям соединения элементов в нужных пропорциях и в нужном порядке. Наконец, ученые-химики должны были разработать способы и приемы разнообразных превращений. Именно поэтому химия начала особенно интенсивно развиваться только во второй половине XIX века.
   Все эти условия действуют и в настоящее время: химические предприятия производят вещества для синтезов (такие вещества называются химическими реактивами). Некоторые из них производятся миллионами тонн, потому что они нужны для получения синтетических тканей, моющих веществ, средств защиты растений и множества иных товаров, другие – в количестве всего лишь нескольких граммов или даже миллиграммов (например, радиоактивные препараты).
   Подобно тому, как опытный механик из отдельных частей собирает сложный механизм (а при необходимости и сам изготавливает некоторые части), химики научились «разбирать» сложные органические молекулы на составные части и соединять их в иной последовательности – по своему желанию. Появилась также возможность, не затрагивая остов молекулы, заменять в ней отдельные фрагменты другими, что приводит порой к полнейшему изменению всех свойств вещества. Как из рога изобилия посыпались новые методы и приемы синтеза самых разнообразных органических соединений.

Откуда взялись атомы

   До сих пор, говоря об атомной теории, о том, как из нескольких сортов атомов, соединенных между собой в разном порядке, получаются совершенно непохожие друг на друга вещества, мы ни разу не задались «детским» вопросом – а откуда взялись сами атомы? Почему атомов одних элементов очень много, а других – очень мало, и распространены они очень неравномерно. Например, всего один элемент (кислород) составляет половину земной коры. Три элемента (кислород, кремний и алюминий) в сумме составляют уже 85 %, а если к ним добавить железо, кальций, натрий, калий, магний и титан, то получим уже 99,5 % земной коры. На долю же нескольких десятков остальных элементов приходится всего 0,5 %. Самый редкий на Земле металл – рений, да и золота с платиной не так уж много, не зря они такие дорогие. А вот другой пример: атомов железа в земной коре примерно в тысячу раз больше, чем атомов меди, атомов меди в тысячу раз больше, чем атомов серебра, а серебра в сто раз больше, чем рения.
   Совсем иначе распределены элементы на Солнце: там больше всего водорода (70 %) и гелия (28 %), а всех остальных элементов – только 2 %. Если взять всю видимую Вселенную, то водорода в ней еще больше. Почему так? В древности и в Средние века вопросами о происхождении атомов не задавались, ибо считали, что они существовали в неизменном виде и количестве всегда (а по библейской традиции – были созданы Богом в один день творения). И даже когда атомистическая теория победила и химия начала бурно развиваться, а Д. И. Менделеев создал свою знаменитую систему элементов, вопрос о происхождении атомов продолжал считаться несерьезным. Конечно, изредка кто-либо из ученых набирался смелости и предлагал свою теорию. Как уже говорилось, в 1815 году Уильям Праут высказал предположение, что все элементы произошли из атомов самого легкого элемента – водорода. Как писал Праут, водород – это та самая «первоматерия» древнегреческих философов, которая путем «сгущения» дала все остальные элементы.
   В XX веке усилиями астрономов и физиков-теоретиков была создана научная теория происхождения атомов, которая в общих чертах отвечала на вопрос о происхождении химических элементов. Весьма упрощенно эта теория выглядит так. Вначале вся материя была сосредоточена в одной точке с невероятно большой плотностью (1080 г/см3) и температурой (1027 К). Эти числа настолько велики, что для них даже не существует названий. Примерно 10 миллиардов лет назад в результате так называемого Большого взрыва эта сверхплотная и сверхгорячая точка начала быстро расширяться. Физики достаточно хорошо представляют себе, как развивались события спустя 0,01 секунды после взрыва. Теория же того, что происходило до этого, разработана значительно хуже, поскольку в существовавшем тогда сгустке материи плохо выполнялись известные ныне физические законы (и чем раньше – тем хуже). Более того, вопрос о том, что было до Большого взрыва, по существу даже не рассматривался, поскольку тогда не было самого времени! Ведь если нет материального мира, т. е. никаких событий, то откуда взяться времени? Кто или что будет его отсчитывать?
   Итак, материя начала стремительно разлетаться и остывать. Чем ниже температура, тем больше возможностей для образования разнообразных структур (например, при комнатной температуре могут существовать миллионы различных органических соединений, при +500 °C – лишь немногие, а выше +1000 °C, вероятно, никакие органические вещества существовать не могут, – все они при высокой температуре расщепляются на составные части). По оценкам ученых, через 3 минуты после взрыва, когда температура снизилась до миллиарда градусов, начался процесс нуклеосинтеза (это слово происходит от латинского nucleus — «ядро» и греческого «синтесис» – «соединение, сочетание»), т. е. процесс соединения протонов и нейтронов в ядра различных элементов. Помимо протонов – ядер водорода, появились и ядра гелия; эти ядра еще не могли присоединить электроны и образовать атомы из-за слишком высокой температуры. Первичная Вселенная состояла из водорода (примерно 75 %) и гелия с примесью небольшого количества следующего по массе элемента – лития (в его ядре три протона). Этот состав не изменялся примерно 500 тысяч лет. Вселенная продолжала расширяться, остывать и становилась все более разреженной. Когда температура снизилась до +3000 °C, электроны получили возможность соединяться с ядрами, что привело к образованию устойчивых атомов водорода и гелия.
   Казалось бы, что и дальше Вселенная, состоящая из водорода и гелия, должна была расширяться и остывать до бесконечности. Но тогда не было бы не только других элементов, но и галактик, звезд, а также нас с вами. Бесконечному расширению Вселенной противодействовали силы всемирного тяготения (гравитации). Гравитационное сжатие материи в разных частях разреженной Вселенной сопровождалось повторным сильным разогревом – наступила стадия массового образования звезд, которая продолжалась около 100 миллионов лет. В тех состоящих из газа и пыли областях пространства, где температура достигала 10 миллионов градусов, начинался процесс термоядерного синтеза гелия путем слияния ядер водорода. Эти ядерные реакции сопровождались выделением огромного количества энергии, которая излучалась в окружающее пространство: так загоралась новая звезда. Пока в ней было достаточно водорода, сжатию звезды под действием сил тяготения противодействовало излучение, которое «давило изнутри». Наше Солнце также светит за счет «сжигания» водорода. Идет этот процесс очень медленно, так как сближению двух положительно заряженных протонов препятствует сила кулоновского отталкивания. Так что нашему светилу суждены еще долгие годы жизни.
   Когда запас водородного горючего подходит к концу, постепенно прекращается и синтез гелия, а вместе с ним затухает мощное излучение. Силы гравитации вновь сжимают звезду, температура повышается и становится возможным слияние друг с другом уже ядер гелия с образованием ядер углерода (6 протонов) и кислорода (8 протонов в ядре). Эти ядерные процессы также сопровождаются выделением энергии. Но и запасам гелия рано или поздно приходит конец. И тогда наступает третий этап сжатия звезды силами гравитации. А дальше все зависит от массы звезды на этом этапе. Если масса не очень велика (как у нашего Солнца), то эффект от повышения температуры при сжатии звезды будет недостаточен, чтобы углерод и кислород могли вступить в дальнейшие реакции ядерного синтеза; такая звезда становится так называемым белым карликом. Более тяжелые элементы «изготовлены» в звездах, которые астрономы называют красными гигантами – их масса в несколько раз больше массы Солнца. В этих звездах и идут реакции синтеза более тяжелых элементов из углерода и кислорода. Как образно выражаются астрономы, звезды – это ядерные костры, зола которых – тяжелые химические элементы.
   Выделяющаяся на этом этапе жизни звезды энергия сильно «раздувает» внешние слои красного гиганта; если бы наше Солнце стало такой звездой, Земля оказалась бы внутри этого гигантского шара – перспектива для всего земного не самая приятная. Звездный ветер, «дующий» с поверхности красных гигантов, выносит в космическое пространство синтезированные этими звездами химические элементы, которые образуют туманности (многие из них видны в телескоп).
   Красные гиганты живут сравнительно недолго – в сотни раз меньше, чем Солнце. Если масса такой звезды превышает массу Солнца в 10 раз, тогда возникают условия (температура порядка миллиарда градусов) для синтеза элементов вплоть до железа. Ядро железа – наиболее стабильное из всех ядер. Это означает, что реакции синтеза элементов, которые легче железа, идут с выделением энергии, тогда как синтез более тяжелых элементов требует затрат энергии. С затратой энергии идут и реакции распада железа на более легкие элементы. Поэтому в звездах, достигших «железной» стадии развития, происходят драматические процессы: вместо выделения энергии идет ее поглощение, что сопровождается быстрым понижением температуры и сжатием до очень маленького объема; астрономы называют этот процесс гравитационным коллапсом (от латинского слова collapsus — «ослабевший, упавший»; недаром медики так называют внезапное падение кровяного давления, что очень опасно для человека). В ходе гравитационного коллапса образуется огромное число нейтронов, которые, благодаря отсутствию заряда, легко проникают в ядра всех имеющихся элементов. Пересыщенные нейтронами ядра претерпевают особое превращение (его называют бета-распадом), в ходе которого из нейтрона образуется протон; в результате из ядра данного элемента получается следующий элемент, в ядре которого уже одним протоном больше. Ученые научились воспроизводить такие процессы в земных условиях; хорошо известный пример – синтез изотопа плутония-239, когда при облучении нейтронами природного урана (92 протона, 146 нейтронов) его ядро захватывает один нейтрон и образуется искусственный элемент нептуний (93 протона, 146 нейтронов), а из него – тот самый смертоносный плутоний (94 протона, 145 нейтронов), который используется в атомных бомбах. В звездах же, которые претерпевают гравитационный коллапс, в результате захвата нейтронов и последующих бета-распадов образуются сотни различных ядер всех возможных изотопов химических элементов. Коллапс звезды заканчивается грандиозным взрывом, сопровождающимся выбросом огромной массы вещества в космическое пространство – образуется сверхновая звезда. Выброшенное вещество, содержащее все элементы из таблицы Менделеева (и в нашем теле содержатся те самые атомы!), разлетается по сторонам со скоростью до 10 000 км/с, а небольшой остаток вещества погибшей звезды сжимается (коллапсирует) с образованием сверхплотной нейтронной звезды или даже черной дыры. Изредка такие звезды вспыхивают на нашем небосводе, и если вспышка произошла не слишком далеко, сверхновая звезда по яркости затмевает все остальные звезды. И не удивительно: яркость сверхновой звезды может превышать яркость целой галактики, состоящей из миллиарда звезд! Одна из таких «новых» звезд, в соответствии с китайскими хрониками, вспыхнула в 1054 году. Сейчас на этом месте находится известная Крабовидная туманность в созвездии Тельца, а в ее центре расположена быстровращающаяся (30 оборотов в секунду!) нейтронная звезда. К счастью (для нас, а не для синтеза новых элементов), такие звезды вспыхивали пока лишь в далеких галактиках…
   В результате «горения» звезд и взрыва сверхновых звезд в космическом пространстве оказались все известные химические элементы. Остатки сверхновых звезд в виде расширяющихся туманностей, «разогретых» радиоактивными превращениями, сталкиваются друг с другом, конденсируются в плотные образования, из которых под действием гравитационных сил возникают звезды нового поколения. Эти звезды (в их числе и наше Солнце) уже с самого начала существования содержат в своем составе примесь тяжелых элементов; такие же элементы содержатся и в окружающих эти звезды газопылевых облаках, из которых образуются планеты. Так что элементы, входящие в состав всех окружающих нас вещей, в том числе и нашего тела, родились в результате грандиозных космических процессов…
   Почему же одних элементов образовалось много, а других – мало? Оказывается, в процессе нуклеосинтеза с наибольшей вероятностью образуются ядра, состоящие из небольшого четного числа протонов и нейтронов. Тяжелые ядра, «переполненные» протонами и нейтронами, менее устойчивы и их во Вселенной меньше. Существует общее правило: чем больше заряд ядра, чем оно тяжелее, тем меньше таких ядер во Вселенной. Однако это правило выполняется не всегда. Например, в земной коре мало легких ядер лития (3 протона, 3 нейтрона), бора (5 протонов и 5 или 6 нейтронов). Предполагают, что эти ядра по ряду причин не могут образоваться в недрах звезд, а под действием космических лучей «откалываются» от более тяжелых ядер, накопившихся в межзвездном пространстве. Таким образом, соотношение различных элементов на Земле – отголосок бурных процессов в космосе, которые происходили миллиарды лет назад, на более поздних этапах развития Вселенной.

От атомов – к молекулам

   Процессы объединения атомов в молекулы широко распространены во Вселенной и всегда происходят там, где для этого есть подходящие условия. Таким условиям, например, отвечает умеренная температура, которая должна быть не слишком высокой (десятки – сотни градусов Цельсия) и не слишком низкой (иначе атомам не хватит энергии для взаимодействия друг с другом, т. е. для химической реакции). В межзвездной среде условия для образования молекул не очень благоприятные, хотя бы из-за чрезвычайной разреженности вещества (несколько атомов в 1 см3, тогда как в каждом кубическом сантиметре воздуха их 3,7·1019). Тем не менее в космосе обнаружены многие молекулы, в том числе и довольно сложные, содержащие большое количество разных атомов. Насколько далеко может зайти процесс усложнения молекул в межзвездной среде? Не могут ли таким способом возникнуть какие-либо формы жизни? Наука пока не в состоянии ответить на эти вопросы – мы ведь даже толком не знаем, как возникла жизнь на Земле и действительно ли она возникла на нашей планете или была каким-то образом «занесена» из космоса…
   Доподлинно известно, что в благоприятных условиях возможно соединение в определенном порядке многих тысяч атомов, при этом образуются такие сложные образования, как молекулы белков, молекулы наследственности ДНК, содержащие десятки тысяч атомов.
   Полагают, что Солнечная система образовалась примерно 4,6 миллиарда лет назад. За это время и возникло окружающее нас богатейшее разнообразие неорганических и органических соединений. И все они образовались из химических элементов, уже имевшихся в Солнечной системе в момент ее образования. Процесс образования сложных соединений из отдельных атомов и простейших молекул называют «химической эволюцией». В этом процессе, который длился миллиарды лет, еще много «белых пятен», в частности – как из простых молекул возникли сложные, состоящие из многих тысяч атомов; как эти сложные молекулы дали начало простейшим живым существам; наконец, как шло последующее развитие – от простейших одноклеточных микроорганизмов до высших животных и «венца природы» – мыслящего человека.

КАК РАБОТАЮТ ХИМИКИ

Измерение массы и объема

   Все мы постоянно находимся в мире, где царствуют числа. Этими числами измеряется все: цена – на хлеб или на гектар леса, время – до окончания урока или до выключения двигателя ракеты, расстояние – между шкафом и диваном и между скоплениями галактик, масса – атома урана и урожая пшеницы, температура – тела больного и чугуна в доменной печи… А еще измеряются сила электрического тока и сила света, плоские и телесные углы, площади и объемы, скорости и ускорения, плотности тел и их сжимаемость, твердость и давление, энергия и мощность, жесткость воды и влажность воздуха, частота и период колебаний, электрический заряд и электропроводность, магнитный поток и магнитная восприимчивость, яркость и освещенность, прозрачность и мутность, интенсивность радиации и период полураспада… Перечислять можно очень долго. И, конечно, не химики первыми начали производить измерения. И не физики. Без измерений могут обходиться только животные. Уже первобытные люди должны были считать дни до начала наступления холодов или дни до периода дождей и разлива рек. Конечно, единицы измерения, если не считать «естественных», таких как сутки и год, у всех были разные: масса и длина ячменного зерна, расстояние между концами вытянутых пальцев кисти или между поднятой рукой и ногой (во всех таких случаях речь, естественно, шла только о средних величинах; иногда эти величины узаконивали, «привязывая», например, к длине локтя или ступни монарха).
   Понятно, что у каждого племени, а потом и у каждого народа появлялись свои единицы измерения; это вносило большие неудобства в общение между ними. И такие неудобства до сих пор окончательно не изжиты, хотя еще в середине XX века была принята Международная система единиц (СИ). Вот и приходится переводить английские единицы давления psi (pounds per square inch, т. e. фунты на квадратный дюйм) в привычные для нас килограммы на квадратный сантиметр (атмосферы), градусы Фаренгейта, по неудобной формуле, – в градусы Цельсия, морские и географические мили – в километры, футы – в метры, фунты – в килограммы, галлоны и баррели – в литры, даты по лунному календарю и по хиджре (где летоисчисление ведется с 662 года, когда пророк Мухаммед переселился из Мекки в Медину) – в даты по «новому» (а иногда и по «старому») стилю солнечного календаря, не говоря уже о пересчете наших рублей в украинские гривны или ангольских кванз в свазилендские лилангени. Как совершенно справедливо заметил М. И. Грамм, автор «Занимательной энциклопедии мер, единиц и денег», если бы знаменитая Книга рекордов Гиннеса появилась лет 200 назад, в ней почти никто не смог бы разобраться – настолько непохожи были в разных странах единицы измерения чего угодно. Немецкий математик и физик Иоганн Ламберт (1728–1777) в своей книге «Пирометрия» (этот термин дословно означает «измерение теплоты») описал 19 разных температурных шкал, которыми пользовались в XVIII веке! Сейчас от них остались только три, но и это слишком много.
   К счастью, теперь хотя бы в научных публикациях в большей или меньшей степени используется единая система мер – СИ (или SI — от французского Système International d’Unités – Международная система единиц, так что говорить «система СИ» не совсем правильно: получается «система системы»). Оговорка «в большей или меньше степени» необходима потому, что единицей объема в СИ служит кубический метр или его дольные единицы – кубический дециметр и кубический сантиметр. Химики же привыкли использовать для этой цели литры и миллилитры (по правде говоря, 1 дм3 и 1 л практически не различаются). Вместо единицы энергии джоуль химики по старинке еще продолжают использовать калории. Но вот дюймы вместо сантиметров или фунты и унции вместо килограммов и граммов в химических работах уже не встретишь.
   Посмотрим теперь, с какими основными измерениями и с каким оборудованием приходится иметь дело химикам. А заодно проведем несколько небольших «домашних» измерений, из которых можно получить довольно интересные, а иногда и неожиданные результаты.
   Работа современного химика немыслима без множества различных измерений. Одним из самых важных измерений всегда считалось взвешивание. Это одна из наиболее распространенных операций в химии. Поэтому уже в первых химических лабораториях можно найти весы (рис. 2.1).


   Рис. 2.1. Весы Роберта Бойля (к левой чашке весов привязана нитка для взвешивания предметов, погруженных в воду)

   Весы были изобретены так давно, что еще в античные времена люди почитали их дарами богов. При раскопках древнего Вавилона археологи не раз находили каменные изделия правильной геометрической формы; иногда они напоминали фигурки животных. Оказалось, что это древние гири, которым больше 4,5 тысяч лет! На каждой гире указан ее вес. Единицей измерения у вавилонян служила довольно увесистая гиря массой (в современных единицах) около 0,5 кг. Эта единица называлась малой миной, она просуществовала несколько тысяч лет. Другие гири были еще тяжелее. С их помощью взвешивали зерно и другую сельскохозяйственную продукцию.
   В Древнем Риме единица массы называлась либрой (или фунтом – от латинского слова pondus – «вес, тяжесть, гиря»). Римский фунт был равен (в современных единицах) 327,45 г. Во времена Карла Великого (IX век) фунт «потяжелел» до 408 г. Раздробленность средневековой Европы привела к тому, что чуть ли не в каждом королевстве, княжестве был свой фунт – а то и не один. Достаточно сказать, что к концу XVIII века в разных странах применялись сотни различных фунтов! Например, в старинном французском фунте было 489,5 г, в голландском – 492,2 г, в немецком (ганноверском) – 489,6 г. Вот и приходилось, например, в России официально устанавливать, что английский фунт = 1 русскому фунту 13 золотникам 44 долям, лондонский фунт = 1 русскому фунту 9 золотникам 51 доле, амстердамский фунт = 1 русскому фунту 19 золотникам 33 долям и т. д. и т. п. Отметим, что русский фунт, равный 409,51 г, полностью соответствовал двум старинным новгородским серебряным гривнам; он делился на 96 золотников, а в 1 золотнике было 96 долей (эти меры можно встретить в надписях на «царских» золотых и серебряных монетах, а также на серебряных полтинниках и рублях, датированных 1921–1927 годами). Вплоть до XX века в Бельгии, Венгрии, Германии, Дании, Голландии, Франции и в некоторых других странах применяли метрический фунт – ровно 500 г.
   Трудно даже представить, каково было когда-то торговцам (а также химикам), вынужденным каждый раз проводить пересчет из одной системы единиц в другую. В США до сих пор широко пользуются фунтом, который, правда, немного полегче старых европейских, но тяжелее русского: в нем 453,59 г. В Великобритании, в которой особенно крепки традиции, до сих пор для разных целей пользуются «разными фунтами»: так называемым торговым (коммерческим) – 453,59 г, аптекарским и тройским – в обоих по 373,24 г. Аптекарские меры отличаются от тройских тем, что в них есть драхмы и скрупулы, а в тройских – караты, в которых выражают массу драгоценных металлов и камней. Кстати, слово «тройский» не имеет никакого отношения к Древней Трое; это название произошло от французского города Труа (по-французски Troyes), где в Средние века проходили торговые ярмарки.
   Разные меры, применяемые при взвешивании товаров разного типа, привели к забавной старинной задаче: «Что весит больше: фунт золота или фунт пуха?» Оказывается, школьники разных стран должны решать ее по-разному! Самый простой ответ (его дал Оська, один из героев книги Льва Кассиля «Кондуит и Швамбрания») звучит так: «Фунт фунтом и будет!», т. е. фунт золота и фунт пуха весят одинаково. А вот школьники англоязычных стран должны отвечать иначе: «Фунт пуха весит больше!» Почему так? Да потому, что в этих странах пух (как и другие товары) взвешивают с использованием английской торговой (коммерческой) системы мер – «эвердьюпойс» (avoirdupois — это странное словечко произошло от старинного французского выражения, означающего «товары на вес»), в которой 1 фунт = 453,59 г. Золото же (а также другие благородные металлы, драгоценные камни и лекарства) принято взвешивать подругой системе мер – монетной (тройской) и аптекарской, в которой 1 фунт = 373,24 г. Понятно, что пух взвешивали (а кое-где и сейчас взвешивают) в торговых фунтах, а золото – в тройских, и потому фунт пуха весит больше. Кстати, в XIX веке гагачий пух – а он самый теплый – продавали по 6–7 рублей за фунт; это были большие деньги, так что позволить себе спать на гагачьей перине могли только исключительно богатые люди…
   Любопытно, что англоязычные школьники должны давать прямо противоположный ответ на очень похожий вопрос: «Что весит больше: унция золота или унция пуха?» Чтобы понять, в чем тут дело, надо сначала «разобраться» с унцией. По-английски унция – ounce, слово того же происхождения, что и inch (дюйм) – от латинского uncia – «двенадцатая часть» (имеется в виду двенадцатая часть фунта – по тройской системе мер). Делим 373,24 на 12 и получаем 31,1 г (более точно – 31,1035 г). В тройских унциях по традиции измеряют массу драгоценных металлов в монетах, в том числе и отечественных (юбилейных и памятных). Посмотрите на фотографию гербовой стороны юбилейной монеты, выпущенной к 250-летию Московского государственного университета (рис. 2.2). В правом нижнем углу рядом со знаком Московского монетного двора (ММД) указана масса серебра в граммах, соответствующая одной тройской унции – 31,1.
   А вот в торговой (коммерческой) системе мер та же унция определяется иначе – как одна шестнадцатая часть торгового фунта, т. е. 28,25 г. Поэтому унция пуха весит меньше, чем унция золота!


   Рис. 2.2. Юбилейная монета «250 лет МГУ» содержит ровно одну тройскую унцию чистого серебра

   К сказанному можно добавить, что общеупотребительное сокращенное название унции (oz) происходит от итальянского названия onza. А какое отношение к унции имеет английский дюйм? Оказывается, он тоже связан с числом 12 следующим соотношением: 1 дюйм = 12 линий = 2,54 см. Разное же написание (и произношение) объясняется тем, что слово ounce пришло в английский язык из старофранцузского (unce), тогда как слово inch — из англосаксонского ynce и потому подверглось более сильному искажению. Русское же слово «дюйм», которое ввел Петр I, происходит от голландского duim — большой палец руки; сейчас это слово осталось только при измерении диаметра труб (стандартная водопроводная труба в доме обычно имеет диаметр полдюйма), а также в словах «трехдюймовая» (пушка) и Дюймовочка в сказке Андерсена.
   А теперь попробуйте ответить на такой необычный вопрос: «Что больше: масса 1 кг пуха или масса 1 кг золота?» Правильный ответ может показаться вам совершенно неожиданным: масса килограмма пуха больше! А почему – подумайте сами. (Подсказка: и золото, и пух взвешивали у нас, на Земле, а не где-нибудь на Луне!)
   Сейчас практически все ученые, в том числе и химики, пользуются метрической системой мер, в которой массу выражают в килограммах, граммах и миллиграммах. В особых случаях используют еще более мелкие единицы – микрограммы (миллионные доли грамма), а иногда и нанограммы (миллиардные доли грамма).
   Вы сами можете изготовить весы и гири к ним, используя самые простые материалы: мягкую алюминиевую проволоку, нитки и легкие пластмассовые баночки (в таких баночках продают варенье, йогурты, творог и т. п.). Устройство весов видно из рисунка (рис. 2.3).


   Рис. 2.3. Самодельные весы и разновесы к ним

   Деревянная (или легкая металлическая) стрелочка-указатель при равновесии располагается строго вдоль нитки, на которой подвешены весы. Если стрелка отклоняется от вертикального положения, надо более легкое коромысло весов утяжелить – намотать на нее немного тонкой медной проволоки, так чтобы стрелка располагалась вертикально. А где взять гири (химики называют их разновесами)?
   Раньше с этим было просто: можно было использовать «медные» монеты, которые чеканились в СССР (с небольшими перерывами) с 1926 по 1991 годы; копейка весила ровно 1 г (конечно, если она не очень стерлась), двухкопеечная монета – 2 г, трехкопеечная – 3 г, «пятак» – 5 г. Возможно, в вашей семье сохранились такие монеты, хотя бы несколько штук. Тогда вы можете с их помощью изготовить себе целый набор разновесов, используя алюминиевую проволоку подходящего диаметра и кусачки. Делается это так. В одну чашку кладете копейку, а в другую – кусочек проволоки, который весит больше 1 г. Осторожно откусывая от проволоки маленькие кусочки, добейтесь, чтобы весы пришли в равновесие. Аналогичным образом сделайте две гирьки по 2 г, используя либо старую двухкопеечную монету (такие монеты называли «двушками»; их очень любили, так как с такой монетой можно было позвонить по телефону-автомату), либо современную российскую 10-копеечную монету, которая тоже весит ровно 2 г. К сожалению, масса большинства современных монет «нецелая»; например, 1 копейка весит 1,5 г, 5 копеек – 2,5 г, 1 рубль – 3,3 г. А почему двухграммовых гирек должно быть две? Потому что стандартный набор гирь-разновесов таков: 1, 2, 2, 5, 10, 20, 20, 50, 100. Он позволяет взвесить любой предмет массой от 1 до 210 г (вы можете ограничиться «гирями» по 20 г). Когда вы начнете взвешивать, то сами убедитесь, что такой набор – самый удобный. Теперь для вас не составит труда изготовить «гири» по 5, 10 и 20 г (2 штуки!). Если ваши весы оказались достаточно чувствительными и стрелка заметно отклоняется даже при нагрузке 1 г, попробуйте изготовить гирьки по 0,5 г; как это сделать, подумайте сами. С помощью самодельных весов и гирь мы проведем несколько интересных опытов.
   Для более точных измерений химики пользуются аналитическими весами. Когда-то каждый экземпляр аналитических весов изготовлялся мастером вручную и стоили хорошие весы очень дорого. Уже в начале XIX века точность самых лучших весов достигала 0,001 г (или 1 мг). Однако лишь немногие химики могли похвастаться такими весами. Даже знаменитый шведский химик Йенс Якоб Берцелиус имел в молодые годы плохо оборудованную лабораторию с довольно грубыми весами, поэтому для получения надежных результатов он был вынужден повторять один и тот же анализ по 20–30 раз! За 10 лет Берцелиус произвел анализ порядка 2000 соединений, состоящих из 43 элементов. Можно только восхищаться усердием, с каким он проделал эту колоссальную работу. Спустя почти столетие другой знаменитый химик Вильгельм Оствальд, один из первых лауреатов Нобелевской премии по химии, увидев в музее оборудование, с которым работал Берцелиус, сказал: «Мне стало совершенно ясно, как мало зависит от прибора и как много от человека, который перед ним сидит». Конечно, Оствальд имел в виду не только весы, и его слова остаются во многом справедливы и сегодня.
   Со временем весы совершенствовались, и через несколько десятилетий уже каждый химик имел возможность взвешивать на стандартных аналитических весах несколько граммов вещества с точностью до 0,0001 г (рис. 2.4). Такие аналитические весы до сих пор можно встретить во многих лабораториях. Два больших цилиндра над чашками весов, внутри которых с маленьким зазором движутся цилиндры чуть меньшего диаметра, – это демпферы, назначение которых – быстро «успокоить» качание весов.


   Рис. 2.4. Аналитические весы

   Гири для аналитических весов должны быть очень точными. Поскольку коррозия может изменить массу гирь на несколько миллиграммов (а это совершенно недопустимо), гири покрывают тонким слоем золота. А чтобы они не пачкались, их разрешается брать при взвешивании только специальным пинцетом. Точное взвешивание на аналитических весах – дело долгое и кропотливое. Даже малейшее движение воздуха в комнате влияет на их показания, поэтому весы помещают в шкафчик со стеклянными дверцами. Для облегчения процедуры взвешивания самые легкие гирьки на таких весах изготовляют в виде тонких проволочных колечек; они подвешены справа вверху на специальном держателе и помещаются в нужное место на коромысло весов с помощью рычажков, которыми можно управлять, вращая пластмассовый черный диск на внешней дверце шкафчика. Такие аналитические весы – очень сложный и капризный механический агрегат. Их коромысло качается на опоре из особо твердого минерала – агата. Таким весам посвящались целые параграфы в учебниках, и аккуратной работе с ними ранее долго обучали студентов. Вот что писала в рекламной брошюре 1940 года фирма «Кристиан Беккер», производившая такие весы: «Простой расчет показывает, что средний химик проводит значительную часть рабочего времени у весов. В лаборатории нередко можно видеть химиков, ожидающих возле весов своей очереди, задерживающих важную работу, чтобы провести необходимое взвешивание. В связи с этим очевидна необходимость в быстро работающих, удобных и точных весах».
   Возникла необходимость – и задача была решена. Постепенно эти красивые аналитические весы уходят в прошлое. Недавно в бюллетене Американского химического общества была опубликована заметка, где говорилось, что весы – один из основных инструментов химика, за последнее время потеряли шарм, который в свое время делал их центральным местом лаборатории. И потеряли они его в результате… усовершенствования. Современные аналитические весы настолько удобны в работе, надежны и относительно дешевы, что многие химики как бы перестали их замечать, привыкли к ним. Современные весы – настоящее чудо электронной техники (рис. 2.5). На электронных весах можно взвесить с высокой точностью легкие образцы, стаканчик с раствором и даже тяжелую банку с краской. Обратите внимание: чем легче взвешиваемый предмет, тем больше знаков после запятой выдают весы. Для очень точных измерений электронные весы могут выдавать вес до пятого знака после запятой, т. е. до сотой доли миллиграмма.


   Рис. 2.5. Электронные весы

   Электронные весы экономят массу времени: на взвешивание уходит всего несколько секунд. Судите сами: у электронных весов – всего одна чашка и никаких гирь! Чтобы отвесить, например, определенное количество реактива в виде порошка, химик ставит сначала на чашу весов пустую посуду, например, стаканчик. Встроенный в механизм чувствительный датчик давления выдает на микропроцессор сигнал, и после мгновенного вычисления на световом табло сразу высвечивается масса стаканчика, причем с очень высокой точностью (у некоторых весов точность измерения можно по желанию изменить). Нажатие специальной кнопки – и на табло опять одни нули; это значит, что процессор «запомнил» массу стаканчика и далее будет автоматически учитывать ее, когда в стаканчик поместят взвешиваемое вещество. Многие весы имеют также специальные программы для обнаружения ошибки взвешивания, усреднения погрешностей, вызванных вибрацией здания. Точность же электронных весов может быть необыкновенной. Так, микровесы имеют чувствительность до 10-6 г, а ультрамикровесы – 10-7 г. На таких весах можно определить массу точки, которую вы поставили авторучкой на листке бумаги!
   Когда химики работают с жидкостями, например, с водными растворами, они обычно определяют не массу, а объем раствора. И в этом случае приборы для определения объема могут быть самыми разными и совершенно непохожими друг на друга – все зависит от того, каков объем раствора и какова точность измерения. Вы, возможно, видели аптечные склянки с делениями, которые показывают объем налитой жидкости. Химики для этих целей используют мерные стаканы (один такой стакан показан на предыдущем рисунке – он стоит на весах), колбы и цилиндры (рис. 2.6). Колба и цилиндр справа снабжены стеклянной притертой пробкой. С такой пробкой раствор может находиться в сосуде очень долго, не испаряясь. Стаканы и колбы с делениями предназначены лишь для приблизительной оценки объема жидкости, поскольку они не очень точны. Цилиндры (они бывают огромные, на несколько литров, но точность их невелика – 50 или 100 мл, а бывают и маленькие цилиндры на 5–10 мл с делениями через 0,5 мл или даже меньше) позволяют отмерять объем жидкости значительно точнее. Тут как с весами – чем меньше измеряемое количество, тем меньше и цена деления. Чтобы лучше видеть цифры, шкала цилиндра может быть окрашена. Шестигранное основание цилиндра не дает ему катиться по столу, если его положить на бок (пустой, конечно). А надетое в верхней части пластмассовое кольцо не дает цилиндру разбиться, если он случайно упадет на лабораторный стол.


   Рис. 2.6. Колбы для жидкостей с делениями (а) и мерные цилиндры (б). Справа внизу (в) изображена колба на 25 мл

   Когда при выполнении химических анализов химикам приходится готовить с большой точностью определенный объем раствора, например, 25, 100 или 500 мл, для этой цели используют стеклянные мерные колбы. Отличительная особенность мерной колбы – узкое длинное горлышко с нанесенной в верхней части кольцевой меткой – риской, до которой необходимо налить раствор, чтобы получить требуемый объем. Узкое горлышко позволяет точнее отмерять объем жидкости. Если при данной температуре (а температура, при которой измерен объем колбы, указана на стенке сосуда) насыпать в колбу точно взвешенную массу твердого вещества, затем налить в нее примерно на 2/3 объема растворитель (например, воду), закрыть пробкой, осторожно взболтать до растворения твердого вещества, а потом медленно (а в конце буквально по каплям) долить воду ровно до метки, то получится раствор вещества точно известной массы в точно известном объеме. Это позволяет легко рассчитать концентрацию полученного раствора, что для химиков очень важно.
   Иногда химикам приходится объединять обе операции – взвешивание раствора и определение его объема. Делается это для того, чтобы определить плотность раствора – для этого надо его массу разделить на объем. Для определения плотности служат пикнометры – с виду они такие же, как мерные колбы, только очень маленькие, например, на 1 мл. Наполняют пикнометры до метки пипеткой с оттянутым узким кончиком. Сначала с помощью дистиллированной воды и точных весов определяют объем пикнометра, после чего его можно использовать для определения плотности любой жидкости.
   Аналогом мерной колбы на небольшой объем является мерная пипетка (рис. 2.7, а, б). На ней тоже есть риска – кольцевая метка в верхней узкой части пипетки. Другие пипетки – с делениями – позволяют отмерять разные небольшие объемы жидкости (обычно от 0,1 до 10 мл) с достаточно высокой точностью. Обратите внимание на две пипетки на 10 мл. Левая работает «на слив», т. е. из нее выпускают весь набранный до определенного деления объем жидкости. С помощью правой пипетки на 10 мл объем жидкости отмеряют по разности делений. Медленно затягивать жидкость в пипетку и сливать из нее можно так: укрепить на штативе в вертикальном положении пипетку и рядом с ней в горизонтальном положении – медицинский одноразовый шприц (без иголки) подходящего объема. Затем соединить носик шприца с верхней частью пипетки кусочком резиновой трубки. Медленно двигая поршень шприца, можно набирать в пипетку и сливать из нее нужное количество жидкости. Существуют и другие приспособления – с резиновой грушей, например, показанное на рис. 2.7, в. При этом отпадает необходимость в штативе.
   

комментариев нет  

Отпишись
Ваш лимит — 2000 букв

Включите отображение картинок в браузере  →