Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

Секретная служба MI5 держала в наличии специальные чайники – отпаривать заклеенные конверты.

Еще   [X]

 0 

Системы аэромеханического контроля критических состояний (Живетин Владимир)

Целью управляющих воздействий в таких аэродинамических системах, как самолет, является достижение потребных значений поля сил аэродинамического давления, определяющих его состояние во времени. В монографии представлены результаты теоретико-экспериментального метода аэромеханического контроля, включающего математические методы обработки первичной информации (перепада давления) и средств их практической реализации. Рассмотрены проблемы обеспечения безопасного полета, анализа, прогнозирования и предотвращения одной из самых опасных ситуаций полета – сваливания.

Монография предназначена для специалистов в области контроля и управления самолетом.

Год издания: 2010

Цена: 149 руб.



С книгой «Системы аэромеханического контроля критических состояний» также читают:

Предпросмотр книги «Системы аэромеханического контроля критических состояний»

Системы аэромеханического контроля критических состояний

   Целью управляющих воздействий в таких аэродинамических системах, как самолет, является достижение потребных значений поля сил аэродинамического давления, определяющих его состояние во времени. В монографии представлены результаты теоретико-экспериментального метода аэромеханического контроля, включающего математические методы обработки первичной информации (перепада давления) и средств их практической реализации. Рассмотрены проблемы обеспечения безопасного полета, анализа, прогнозирования и предотвращения одной из самых опасных ситуаций полета – сваливания.
   Монография предназначена для специалистов в области контроля и управления самолетом.


В.Б. Живетин Системы аэромеханического контроля критических состояний Том 19

О серии «Риски и безопасность человеческой деятельности»

   Исследования и анализ риска служат основой для принятия решений практически во всех сферах человеческой деятельности. В зарубежных развитых странах идет активный процесс организации научно-исследовательских институтов, факультетов в университетах, специализированных научных и учебных центров по анализу риска. Благодаря значительному прогрессу, достигнутому за последние десятилетия в области теории риска, это новое междисциплинарное научное направление практически выделилось в самостоятельную дисциплину. И это не дань моде, а естественный процесс, предопределенный современными условиями и тенденциями развития мирового сообщества.
   Человечество прошло великий путь, достигло высоких результатов в своей деятельности и при этом пережило и продолжает переживать великое множество трагедий. Многие из них происходят из-за амбиций отдельных светских и религиозных деятелей и властителей и утопических теорий построения общества, начиная от первых цивилизаций, заканчивая эпохой Нового времени, когда на планете проявились мощные духовные утопии, обусловливая не менее мощные материальные потери. Сюда относятся как государственные системы, так и способы их обустройства, мораль и этика, знания, другие человеческие ценности, реализованные в процессе человеческой деятельности.
   Противопоставляя друг другу религию, философию и науку, мы часто забываем их родство. Для того чтобы иметь полные знания, осмыслить проблему достоверности знаний, необходимо изучать их во взаимосвязи, взаимозависимости, когда ошибки одной подсистемы общей системы знаний преобразуются, видоизменяются другой. Уничтожение одной из подсистем создает условия для усиления ошибок другой. При этом возрастают потери не только отдельных подсистем, но и системы в целом.
   Задача состоит в оценке имеющихся или вновь накопленных знаний, их достоверности, в разработке критериев, с помощью которых можно количественно оценить потери, сопутствующие применению полученных недостоверных знаний при создании материальной культуры. Ведущая роль при этом принадлежит духовной культуре, пониманию, осознанию себя.
   В последнее время человек в научном познании, технике расширяет свои знания, а во внутреннем мире, духовной, моральной культуре – теряет, становится рабом своих неуемных желаний и жадности. В жизни отдельной личности и человечества в целом роль различных ошибок возрастает, и возрастают потери от этих ошибок, следовательно, роль риска в человеческой деятельности становится существенной.
   Основы деятельности человека формируются его интеллектуальной системой, а реализуются во внешней и во внутренней средах. Во внутренней среде деятельность направлена на совершенствование своей интеллектуальной системы; во внешней среде – на совершенствование социальной системы, где реализуются процессы его жизнедеятельности.
   Интеллектуальная система человека как источник планомерного формирования умственных действий и их микроструктурного анализа в процессе познавательной и исполнительной деятельности включает деятельностное опосредствование межличностных отношений.
   Человеческой деятельности свойственна развитая форма предметности, проявляющаяся в социальной обусловленности деятельности человека, ее связи со значениями, фиксированными в закрепленных в орудиях и схемах действиях, понятиях языка, социальных ролях, ценностях, социальных нормах. Субъективность деятельности обусловлена прошлым опытом психического образа, потребностями, установками, эмоциями, целями, мотивами, определяющими направленность и избирательность деятельности.
   Три уровня синтеза и анализа деятельности человека:
   – генетический;
   – структурно-функциональный;
   – динамический.
   Деятельность, с учетом сказанного, представляет собой динамическую систему, которая находится в постоянном изменении и обусловлена: активностью, обеспечивающей саморазвитие деятельности и возникновение ее новых форм; установкой, обусловливающей устойчивый характер целенаправленной деятельности в постоянно изменяющихся условиях среды.
   Указанным свойствам человеческой деятельности как динамической системы посвящены работы:
   – физиологии активности (Н.А. Бернштейн);
   – функциональных систем (П.К. Анохин);
   – системной организации высших корковых функций (А.Р. Лурия).
   Возможны следующие варианты реализации деятельности в своих крайностях:
   – деятельность по реализации, привнесенной извне программы (приказа), которую в Древней Греции называли «noietis»;
   – деятельность субъекта, выступающего одновременно и субъектом целеполагания, и субъектом реализации данной цели (целедостижения, целереализации), которая в Греции называлась «chretis», а ее творческая разновидность – «praxis».
   В современной философии деятельность разделяется по предметному критерию:
   1) материальная деятельность, которая реализуется в процессе взаимодействия человека и природы в контексте производства;
   2) социальная деятельность, реализующаяся в процессе влияния человека на социальные процессы и организацию общественной жизни;
   3) духовная деятельность, реализуемая интеллектуальной системой человека при создании системы знаний для реализации процессов жизнедеятельности.
   В современной социальной среде актуальна проблема синтеза структур, обусловленная объективными и субъективными аспектами социальной жизни, формируемой на макро– и микроуровнях во взаимодействии структуры и деятельности. Во всех случаях ученые стремились к решению проблемы структурно-функционального синтеза систем, реализованных в процессе человеческой деятельности. В качестве таких систем выступают: общество, социальная, эгосферная системы и т. д.
   В монографии создаются структурно-функциональные основы моделирования человеческой деятельности в различных сферах жизнедеятельности. Это позволяет разделить исследование проблемы рисков и безопасности человеческой деятельности как динамической системы по сферам жизнедеятельности, взаимосвязанным на структурно-функциональной основе, включающей структурно-функциональный синтез и анализ.
   В многотомной монографии представлены разработанные автором теоретические основы анализа, прогнозирования и управления рисками и безопасностью человеческой деятельности на уровне математического моделирования в следующих областях на уровне систем.
   Эгосферные системы (четыре тома):
   1. Человеческие риски.
   2. Эгосферные риски.
   3. Риски интеллектуальной деятельности.
   4. Эгодиагностические риски.
   Социальные системы (пять томов):
   1. Социосферные риски.
   2. Ноосферные риски систем власти.
   3. Теосферные риски религиозных систем.
   4. Биосферные риски.
   5. Риски цивилизаций.
   Экономические системы (пять томов):
   1. Экономические риски и безопасность.
   2. Введение в анализ риска.
   3. Управление рисками рыночных систем.
   4. Управление рисками банковских систем.
   5. Управление рисками коммерческих банков.
   Технико-экономические системы (пять томов):
   1. Технические риски.
   2. Риски и безопасность авиационных систем. Системная безопасность гражданской авиации страны (анализ, прогнозирование, управление).
   3. Риски и безопасность авиационных систем. Методы и средства обеспечения безопасности полета (основы анализа).
   4. Риски и безопасность авиационных систем. Системы аэромеханического контроля критических состояний.
   5. Риски и безопасность авиационных систем. Безопасность полета вертолета. Системы аэромеханического контроля.
   Системы научных знаний (три тома):
   1. Научные риски.
   2. Введение в теорию риска.
   3. Математические знания: системы, структуры, риски.
   Этико-правовые риски (четыре тома):
   1. Этико-правовые риски демократий.
   2. Этико-правовые риски человеческой деятельности.
   3. Этико-правовые риски россиян.
   4. Управление этико-правовыми рисками.
   Представленную монографию следует рассматривать как нуждающуюся в дальнейшем осмыслении и углублении. Особая роль, по мнению автора, принадлежит духовной сфере, духовным рискам, управление которыми возможно путем единения духовного, которое позволяет реализовать устойчивое развитие ноосферы человечества.
   Сегодня мы можем констатировать, что создано новое научное направление: «Системная рискология», изложенная в 21 томе монографий, включающая:
   – системную математику;
   – системную экономику;
   – системную медицину;
   – системную авиацию.
   Методом структурно-функционального синтеза доказано существование единой универсальной структуры систем, в том числе созданных в процессе человеческой деятельности. Это позволяет создать единый метод анализа риска и безопасности динамических систем как информационно-энергетических, так и интеллектуально-энергетических. Все это обуславливает большую значимость системного подхода при решении научных и прикладных проблем человеческой жизнедеятельности.
   На этой основе представляется возможность организации новых специализаций по проблемам управления рисками в рамках первого, основного, диплома, а также второго диплома.

Введение

   Поле аэродинамического давления, возникающее на поверхности летательного аппарата (ЛА) в процессе полета, подлежит контролю и управлению. Это необходимо в первую очередь для обеспечения безопасности полетов, снижения эксплуатационного риска, обусловленного возникновением критических ситуаций, таких как сваливание. Кроме того, в процессе контроля и управления полем аэродинамического давления осуществляются экономичные режимы полета, обеспечивается заданная точность выполнения боевых заданий. Пространственные режимы полета (маневры) создают нестандартные условия обтекания, контроль которых с целью идентификации области опасных или безопасных состояний с помощью существующих систем (приборов) невозможен.
   Особую сложность представляют полеты на динамическом потолке [9], в турбулентной среде, имеющей резко разделенные, встречные и попутные потоки. Программы вывода из области критических состояний, а также предотвращения входа в критическую область являются сегодня актуальными. Наиболее реальный путь решения указанной проблемы связан с контролем, прогнозированием, анализом и управлением полем аэродинамических сил, базовой основой которого является поле аэродинамического давления на несущих поверхностях. Обеспечение безопасности полета реализуется путем ограничения некоторого набора параметров фазовой траектории. Этот набор параметров зависит от режима полета: стационарного, квазистационарного, динамического.
   Все авиационное оборудование создано для стационарного режима полета. Исторически развитие авиационного оборудования неразрывно связано с эволюцией самолета. Начало этого процесса было положено тогда, когда ЛА мог рассматриваться как материальная точка. Для этих ЛА был характерен стационарный режим состояния поля сил аэродинамического давления, его структуры по поверхности ЛА.
   В «классической» теории движения самолетов рассматриваются линеаризованные уравнения движения относительно центра масс. При этом, как правило, выделяются продольное и боковое движения и анализируется устойчивость движения «в малом» и, в некоторых случаях, переходные процессы при действии малых возмущений и при малых отклонениях рулей.
   Однако рост скоростей и высот полета, послуживший причиной существенных изменений геометрических и инерционных характеристик, обусловил нелинейные зависимости при маневрах с кренами характеристик устойчивости и управляемости от параметров его движения. При этом теоретически и экспериментально были обнаружены такие режимы неустойчивости, которые при упрощенном (независимом продольном и боковом) анализе не определились. Эти особенности динамики маневренных самолетов связаны с наличием перекрестных связей между параметрами, характерными для продольного и бокового движений, что обусловило совместное рассмотрение уравнений, а также необходимость анализа нелинейных дифференциальных уравнений. Необходимость такого подхода была осмыслена после ряда авиационных катастроф американских истребителей (моделей Нард Америкэн «Супер Сейбр» F-100 и Белл Х-2).
   Одним из возможных направлений применения поля сил аэродинамического давления является использование системы обратной связи по перепаду давления в системах автоматического управления полетом [20]. Почти на всех самолетах, оборудованных системами автоматического управления, положение рулей управления осуществляется через обратную связь по углу отклонения управляющего руля. Поскольку управляющая сила часто линейно зависит от положения руля, этот тип обратной связи работает хорошо. Однако во многих случаях необходимо вводить переменный коэффициент усиления обратной связи, соответствующий пространственному положению самолета в полете, динамическим изменениям давления, числу Маха или их комбинациям. Особенно это важно в нештатных режимах, в том числе для гражданской авиации. При этом отмечаются следующие возможности применения обратной связи по перепаду давления:
   – управление углом атаки;
   – парирование нагрузки от порыва ветра;
   – предотвращение срыва потока на несущих поверхностях ЛА.
   В работе [31] предлагается контролировать угол атаки на поверхности датчиками давления, расположенными приблизительно на расстоянии (10÷15)% хорды от ее начала. Перепад давления, как отмечает автор, здесь пропорционален углу атаки или углу скольжения на вертикальном оперении. Таким образом, выдерживание постоянного перепада давления будет эквивалентно выдерживанию постоянного угла атаки для данных полетных условий. При этом датчик перепада давления, расположенный на несущем крыле, будет контролировать (управлять) отклонение руля высоты.
   Парирование порывов ветра в данной системе осуществляется не за счет сигналов отклонения от траектории, а за счет сигналов об изменении сил давления, когда еще нет отклонений ЛА. При этом датчики перепадов давления размещаются на крыле и хвостовом оперении на одном и том же расстоянии по хорде. В результате датчик на правом крыле будет контролировать положение правого элерона, в то время как датчик на левом крыле будет контролировать положение левого элерона. Элеронам будут предписываться отклонения независимо друг от друга, поэтому для того, чтобы компенсировать несимметричный порыв ветра, изменятся величина давления, результирующая подъемная сила и момент крена. Руль высоты и руль направления будут сохранять моменты тангажа и рыскания в равновесии.
   Предупреждение срыва достигается применением датчиков перепада давления, подобным датчикам, рассмотренным для угла атаки α. Ограничивая перепад давления, мы воздействуем на α и предотвращаем срыв при любом весе самолета, а также срыв в динамическом режиме полета.
   Следующим потребителем информации о поле аэродинамических сил является вертолет. Рассмотрим это направление на примере активной системы устранения срывного флаттера лопасти [31]. Предотвращение срыва потока, имеющего место на лопастях вертолета, является актуальной задачей. Это обусловлено требованиями маневренности и желанием эксплуатирующих организаций перевозить грузы максимально допустимого веса. В ходе исследований, начатых в 1970 году и осуществляемых в течение нескольких лет в рамках контрактов французского правительства, основной упор делается на активную систему устранения срывного флаттера лопастей [31]. В этих работах для активного управления срывом лопастей используется информация о поле сил аэродинамического давления для формирования сигнала управления углом тангажа таким образом, чтобы не происходил срыв потока. С этой целью строится следящая система для управления распределением давления на лопастях.
   Как показывают эксперименты, комбинация срывного и вихревого противодействий, приводящая к внезапному повышению давления подсасывания на передней кромке, имеет место, когда лопасть находится в четвертом квадранте, т. е. при Ψ = 270°÷360°. При этом давление на передней кромке особенно чувствительно к срыву, следовательно подходит для распознавания условий, близких к срывным. Чтобы исследовать проблему количественно, предпочтительнее иметь дело с коэффициентом давления Cp, чем с абсолютным давлением. В таком подходе предотвращение срыва решается путем ограничения величины Cp. Когда величина Cpmax начала срыва известна, тогда ее можно использовать в качестве сигнала рассогласования для того, чтобы избежать отрыв потока на аэродинамической поверхности. При этом необходимо вводить цепь с обратной связью, в которой используется информация о величине Cp, а также силовой привод для обеспечения условия Cp < Cpmax.
   Таким образом, использование информации о перепаде давления, измеренного в характерных точках на поверхности ЛА, является перспективным. Такая информация в измерительных системах используется давно [3, 8]. Однако в известных системах она применяется для измерения невозмущенного потока, в том числе с помощью приемников воздушного давления (давления торможения и статического давления), что не полностью характеризует состояние конкретного ЛА, а определяет лишь собственно движение его как материальной точки. Исследование таких систем проведено в монографии [30], в которых указывается на недостаточную точность функционирования таких измерительных систем при больших значениях углов атаки и скольжения, что приводит к нарушению адекватности между состоянием ЛА и его информационной моделью. Перспективные измерительные системы, как отмечено в работах [3, 8], должны включать в себя вычислители воздушных параметров, работающие с более высокой точностью.
   К настоящему времени проведен определенный объем исследований по разработке компенсационного алгоритма измерения статического давления Pст, динамического давления Pдин, угла атаки а. При этом строилась модель погрешностей, обусловленных влиянием возмущений, вносимых ЛА. Работы проводились в Летно-исследовательском институте.
   В представленной монографии решается задача построения алгоритмов обработки первичной информации, которая представлена в виде дискретных значений поля сил аэродинамического давления на несущих поверхностях ЛА, с целью определения значений его воздушно-скоростных параметров состояния. Поскольку техническая реализация съема давлений возможна только в дискретных точках поверхности ЛА, то возникает задача об установлении адекватной связи между значениями давлений в этих точках и интегральными аэродинамическими характеристиками ЛА в целом и его частей. В связи с этим, опираясь на экспериментальные данные, полученные в аэродинамической трубе Казанского авиационного института, и расчетно-экспериментальные работы Центрального аэрогидродинамического института 1972–1976 годов, автор выдвинул гипотезу о линейной зависимости между коэффициентом подъемной силы Cy и коэффициентом перепада давления
 в отдельной точке или нескольких точках по хорде сечения крыла. Позднее в монографии [9] был представлен график линейной зависимости между Cy и
, полученный экспериментальным путем при исследовании вертолетных винтов.
   Доказанная в монографии теорема о линейной зависимости между коэффициентами подъемной силы и перепада давления на профиле, получившая у специалистов высокую оценку в следующем виде: «Доказательство очень красивое и вносит вклад в теорию профиля. Здорово!» (доктор физико-математических наук, профессор Казанского государственного университета Маклаков Д.В.), применена в задачах построения алгоритмов обработки аэрометрической информации для вычисления параметров состояния ЛА в полете. На основе полученных алгоритмов разработаны способы и построены системы измерения параметров состояния ЛА, которые защищены авторскими свидетельствами.
   Часть монографии посвящена анализу и структурному синтезу систем контроля и управления, на каждую из которых получено авторское свидетельство, в том числе – способам измерения и контроля аэродинамических сил и моментов, а также угла атаки скоростного напора. В основу синтезированных устройств положены полученные в монографии функциональные свойства коэффициента перепада давления, измеренного на несущих аэродинамических поверхностях. Для разработанных устройств проведен анализ качества стабилизации летательного аппарата, определены условия автономности и инвариантности его параметров движения. Приведенные материалы летных испытаний аэромеханических устройств подтвердили целесообразность их использования при эксплуатации вертолетов и самолетов.
   Таким образом, при устанавлении определенным образом датчиков перепада давления на несущих поверхностях ЛА, при использовании алгоритмов обработки информации представляется возможным синтез систем контроля, например, таких параметров траектории полета, как: угол атаки α относительно вектора воздушной скорости ; воздушная скорость полета ; масса т самолета в полете; положение центра тяжести хТ самолета в полете; статическое давление Ρcm. Синтезированные таким образом системы контроля позволяют не только измерить эти параметры, но и строить области их критических (допустимых) значений.
   Кроме систем контроля представляется возможность строить системы управления и предотвращения, например, таких режимов, как срывной флаттер, компенсация турбулентных нагрузок (повышая ресурс), компенсация резкой смены ветра со встречного на попутный (повышая безопасность полета на взлете и посадке).
   Автор приносит благодарность к.ф.-м.н. М.А. Севодину за участие в теоретических разработках, к.т.н. Л.Г. Цветкову за участие в проведении и обработке летных испытаний, д.т.н. Т.К. Сиразетдинову, А.Ю. Лиссу, высказавшему ряд критических замечаний в процессе испытаний устройств измерения тяги несущего винта и малых скоростей полета вертолета.
   Искренне благодарен моему надежному помощнику на завершающем этапе работ Елене Борисовне Савва.
   Велика роль бывшего начальника цеха Вертолетного завода Вильяма Валентиновича Платонова, бывшего начальника Казанского филиала ОКБ им. Миля Виктора Николаевича Першутова, без которых не состоялось бы подтверждение разработок автора в экспериментальных образцах систем аэромеханического контроля, проведение натурных испытаний, подтвердивших высокую точность их функционирования. Светлая память и нижайший поклон им.
   Считаю необходимым отметить негативную роль д.ф.-м.н., профессора КГТУ (бывшего КАИ) Павлова В.Г., поставившего целью «задушить» работу автора по данному направлению, в том числе и прежде всего политическими методами.
   Отмечаю позитивную роль к.ф.-м.н., доцента Сидорова О.П. при написании монографии, а также его отказ содействовать Павлову В.Г. в его лженаучном противостоянии.

Глава I. Системная безопасность полета самолета

1.1. Сваливание самолета. Проблемы предотвращения

1.1.1. Цели системы аэромеханического контроля

   Особенности аэродинамической компоновки современных самолетов обусловили многообразие видов и нестабильностей движений при сваливании и штопоре. При этом повышается резкость сваливания, колебательность, интенсивность вращения и большие скорости снижения в штопоре, что требует от летчика быстрого определения характера режима и четких, правильных действий по выводу из сваливания. Многообразие режимов штопора, ухудшение ориентировки в сложных условиях критического режима полета затрудняет распознавание вида движения, что усложняет обеспечение вывода из критического полета. Кроме того, время принятия решения оказывается критическим при сваливании на малой высоте; возможны ошибочные решения и действия экипажа по управлению воздушным судном.
   По этим причинам воздушные судна должны быть оборудованы бортовой системой обеспечения безопасности полетов, включающей как предотвращение сваливания, так и надежный вывод из этого критического режима. Система должна включать автоматизированный режим функционирования предотвращения сваливания и вывода самолета из штопора.
   В работе представлены результаты теоретико-экспериментальных основ синтеза и анализа бортовой системы обеспечения безопасности полетов, включая расчет вероятностей критических и катастрофических ситуаций с учетом человеческого фактора.
   Поле сил аэродинамического давления, возникающее на поверхности воздушного судна в процессе полета, подлежит контролю и управлению. Это необходимо в первую очередь для обеспечения безопасности полетов и нормативных величин рисков, предотвращения катастроф. Кроме того, в процессе контроля и управления полем сил аэродинамического давления осуществляются экономичные режимы полета, обеспечивая заданную точность и эффектность целевого применения воздушного судна.
   Для реализации контроля и управления полем сил аэродинамического давления (ПСАД) создана система аэромеханического контроля, синтез и анализ которой изложен в данной работе, на которые получены патенты [17, 18].
   Под системой аэромеханического контроля будем понимать в общем случае установление соответствия между фактическим состоянием поля сил аэродинамического давления на поверхности летательного аппарата (ЛА) (обозначим его Рф(S(x,y,z),t)) и допустимым значением – заданной нормой, которая определяет качественно различные области его состояния: области допустимые Ωдоп и критические Ωкр.
   В основу построения системы аэромеханического контроля положены новые функциональные зависимости между перепадом давления, возникающим при полете на верхней и нижней несущих поверхностях воздушного судна и полем аэродинамических сил крыла, вертикального и горизонтального оперений, полученные теоретическим и подтвержденные экспериментальным путем в процессе продувок и летных испытаний.
   Таким образом, система аэромеханического контроля осуществляет:
   – измерение параметров состояния воздушного судна, подлежащих ограничению из условия безопасности полета;
   – определяет критические (допустимые) значения ограничиваемого параметра с учетом возмущающих факторов, обусловливающих риск полета воздушного судна.
   Работа системы аэромеханического контроля основана на контроле параметров, создаваемых воздушным потоком в виде ПСАД на несущих поверхностях воздушного судна. При этом создаются условия контроля пространственных режимов полета, когда возникают нестандартные условия обтекания (отличные от установившегося горизонтального полета), контроль которых с помощью существующих систем с целью идентификации области опасных или безопасных состояний воздушного судна невозможен. Так, например, для предотвращения критических состояний воздушного судна, а в итоге катастроф, необходимо контролировать угол атаки крыла αкр и скорость воздушного потока, обтекающего крыло Vк. Отметим, что современные средства не обеспечивают такого контроля. Они обеспечивают измерение не угла атаки крыла, а угол, образуемый воздушным потоком и горизонтальной осью самолета. Аналогично измеряются не скорость обтекания крыла Vкр, а скорость Vф набегающего на приемник воздушного давления, установленного на фюзеляже параллельно строительной горизонтали фюзеляжа.
   При этом угол атаки крыла и угол измеренной флюгарки совпадают в строго горизонтальном режиме полета, когда γ = β = 0, ωx = ωy = ωz = 0, а также при отсутствии турбулентности набегающего потока воздуха.
   Функционально система аэромеханического контроля в результате контроля устанавливает соответствие между фактическими значениями:
   – угла атаки крыла αкр;
   – скорости воздушного потока, обтекающего крыло Vкр;
   – положения центра тяжести воздушного судна хТ;
   – угла скольжения вертикального оперения β;
   – подъемной силой Y правой и левой полуплоскостей крыла воздушного судна и допустимыми значениями этих параметров, определяющими качественно различные области Ωдоп и Ωкр (допустимые и критические соответственно) их значений.
   При этом синтез и анализ системы аэромеханического контроля разработан так, что позволяет учитывать особенности взаимосвязи и взаимовлияния двух систем контроля и управления, формируемые:
   – экипажем воздушного судна, т. е. рассматривается человеческий фактор, в том числе ошибки интеллектуальной деятельности [13] человека;
   – системой аэромеханического контроля.
   Работа этих систем должна обеспечивать в совокупности безопасность полетов и при необходимости взаимокорректировку своих действий и предотвращать катастрофы в условиях взаимодополняемости.
   Проведенный объем работ включает:
   1) разработку теоретических основ обработки аэромеханической информации для целей предотвращения катастроф;
   2) теоретическое обоснование требований к системе аэромеханического контроля согласно нормативным требованиям ИКАО [14];
   3) экспериментальную проверку работу системы на серийных вертолетах и самолетах;
   4) изготовление опытного образца системы;
   5) летные испытания опытного образца системы.

1.1.2. Катастрофы, обусловленные сваливанием: максимальные потери и риски

   Авиакатастрофы, согласно расследованиям Межгосударственного авиационного комитета, обусловлены рядом типов событий, среди которых основными являются [27]:
   – сваливание;
   – потеря пространственной ориентировки;
   – невыдерживание глиссады;
   – человеческий фактор, отсутствие взаимодействия в экипаже воздушного судна.
   Приведем ряд примеров катастроф, обусловленных сваливанием.
   I. 9 марта 2000 года произошла катастрофа самолета «Як-40» в аэропорту «Шереметьево» (погибло 10 человек).
   Самолет вошел в режим сваливания при угле атаки α не более 14° и коэффициенте подъемной силы Су не более 1,2. Причина раннего сваливания Як-40 обусловлена наличием угловой скорости крена ωх. Сваливание началось, когда высота полета составляла 20–25 метров. С такой высоты начавшийся режим сваливания невозможно нейтрализовать. При сваливании самолет падал «кленовым листом» с левым разворотом.
   Отметим, что, зная поле сил аэродинамического давления (ПСАД), контролируемое посредством системы аэромеханического контроля (САК), можно было гарантированно предотвратить начало образования угловой скорости крена ωх и соответствующее приращение угла атаки α одной из плоскостей, что обусловило закритический угол атаки.
   II. 4 июля 2001 года самолет «ТУ-154» при заходе на посадку в аэропорту г. Иркутска упал в штопор (после сваливания).
   Процесс выхода на закритический угол атаки α происходил с одновременным увеличением угла атаки 12° и левого крена 20°. Затем угол атаки достиг 16,5° (сработал «автомат угла атаки и самолетных перегрузок»), угол крена γ продолжал увеличиваться до 44° при соответствующей угловой скорости крена ωх. Вертикальная скорость снижения Vy = 10 м/с. За 22 сек. до катастрофы: перегрузка nу = 2, угол тангажа υ увеличился за 3 сек. до 20°. Все управления были направлены на поддержание постоянной высоты полета при γ > 30°.
   Все это обусловило выход на закритический угол атаки, произошел срыв потока, затем сваливание воздушного судна. Сваливание нейтрализовать вручную, работая штурвалом и «газуя», по существу, «вслепую», не владея информацией о поле сил аэродинамического давления, не удалось.
   Как сказано в работе [29]: «падение лайнера в штопоре не оставляет пассажирам никаких шансов на спасение».
   Отметим, что у пилота нет средств контроля ПСАД и в частности α с учетом ωх, γ, которые были необходимы для предотвращения сваливания.
   III. Катастрофа ТУ-154, российского самолета, обусловленная падением, произошла из-за сваливания в неуправляемую спираль (плоский штопор) под Донецком (август 2006 г.).
   Итоговая позиция: экипаж не распознал сваливание.
   Процесс сваливания и причины.
   1. Автомат углов атаки и самолетных перегрузок обусловил нечеткое срабатывание при сваливании.
   2. Срывная тряска была принята за воздействие интенсивной турбулентности.
   3. Встречная составляющая ветра ускорила процесс.
   4. Нарастающий тангаж (авиагоризонт сбит) обусловил помпаж двигателя.
   Когда самолет вышел за допустимые значения угла атаки αдоп, сваливание неминуемо, и надо выводить из него. Погрешности приборов, обусловившие α > αдоп, т. е. сваливание, проявили себя следующим образом.
   Приемник воздушного давления (ПВД) (полного и статического) нормально работает, когда местный угол обтекания трубки обеспечивает безотрывное ее обтекание. Такая ситуация возможна примерно до 20° и углов скольжения до ±20°. В плоском штопоре при углах атаки около 60° трубка ПВД обтекается со срывом, дает разрежение, а не поддавливание относительно статики.
   В итоге указатель скорости показывал 34 км/час при скольжении β = 20° (эта величина максимальная в болтанку и штопоре).
   На статику местный угол обтекания влияет в меньшей степени, чем на полное давление, поэтому показаниям барометрического высотомера можно доверять и на больших углах α и β.
   Начало сваливания зафиксировано по указателю при α = 22° и приборной скорости Vпр = 310 км/час. Погрешности приборов были обусловлены:
   – болтанкой, при которой стрелки хаотично отклонялись;
   – в зоне воздушного судна был сильный восходящий поток Wу = 30 м/с, Wуi = 15 м/с в присутствии сдвига ветра;
   – скорость сваливания Vсв при nу = 1,1 в болтанку составляет 307 км/час, а при nу = 1,0 Vсв = 293 км/час и весе 85 т.
   Качественная картина движения самолета после сваливания (в плоском штопоре) приведена на рис. 1.1.
   Средняя скорость Vу при падении была 80 м/сек. Заброс высоты в 700 метров – результат резкого витка в правую сторону и как следствие появление зоны пониженного давления на левом крыле, где расположены приемники статического давления. Этот подхват (за 10 секунд, т. е.  
70 м/с) происходит из-за конструктивных особенностей самолета ТУ-154М, которые обусловливают при определенном угле атаки нарушение обтекания крыла потоком, резко увеличивается подъемная сила, и самолет подбрасывает.
   В этой ситуации наличие САК-Zh позволяет предотвратить подхват, ибо при этом реализуется контроль подъемной силы крыла Υκρ и его ограничение на необходимом уровне, даже если изменение Υκρ обусловлено увеличением угла атаки по независящим от пилота причинам (в том числе турбулентности).

   Рис. 1.1

   IV. 16 марта 2005 года. Потерпел авиационное происшествие самолет Ан-24 RA-46489. Международная авиационная комиссия установила, что причиной катастрофы явилось столкновение самолета с землей на заключительном этапе захода на посадку из-за выхода его на закритические углы атаки и режим сваливания на малой высоте.
   Торможение самолета до скорости сваливания произошло в результате управляющих действий командира воздушного судна, обусловивших его вывод на режим полета со скольжением и сохранения этого режима в течение длительного времени (более 20 секунд) при недостаточном режиме работы двигателей и отсутствии контроля со стороны экипажа за скоростью полета.
   Погрешности в показаниях таких приборов, как указатель скорости, указатель угла атаки, не позволили членам экипажа реализовать достоверный контроль параметров полета и правильное управление по выводу из сваливания.

Статистические данные попадания в режим сваливания и «штопора»

   В приведенной ниже таблице представлены материалы (статистические) за период с 15.08.1958 по 22.08.2006 гг. катастроф по причине сваливания, обусловленных различными факторами. В таблице приведены следующие сокращения:
   СОП – служба организации перевозок (перегруз);
   ОЭ – ошибка экипажа;
   УВД – управление воздушным движением;
   НВВ – неопределенное внешнее воздействие;
   АО – авиационное оборудование;
   ОАТ – отказ авиационной техники;
   ТО – техническое обслуживание;
   К – катастрофа;
   П – предпосылка;
   А – авария.

   Сваливание отечественных самолетов в гражданской авиации 1958…2001 гг.

   Продолжение таблицы

   Окончание таблицы

   Распределение по этапам полета летных происшествий по причинам сваливания в военной авиации

   Превышение допустимой величины угла атаки αдоп:
   – при подходе к верхней точке петли / косой петли;
   – на нижнем участке переворота;
   – при энергичном повороте на цель / посадочный курс;
   – при выполнении горки и выходе из пикирования;
   – на взлете;
   – при посадке.

1.1.3. Основы синтеза аэромеханической системы обеспечения безопасности полета

   – нормативная 3·10–7 на один полет (Рн);
   – целевая 1,35·10–8 на один полет (Рц).
   При этом Рн = 3·10–7 – одна катастрофа на 3·107 полетов.
   Факторы риска R, обусловливающие катастрофы воздушного судна, включают:
   1) производственные погрешности (дефекты) исполнения силовых элементов, включающих: системы контроля и управления; системы обеспечения внутренних процессов воздушного судна
;
   2) профессиональный риск экипажа воздушного судна, в том числе личного состава наземных служб, обусловленных уровнем знания характеристик воздушного судна, надежности рекомендаций по управлению им
;
   3) системный риск, обусловленный недостаточным уровенем контроля и дефектами авионики, посредством которой реализуются управления состоянием воздушного судна во внешней среде
;
   4) риск, обусловленный недостоверной информацией о состоянии воздушного судна и о состоянии среды, в которой протекает полет воздушного судна
.
   Проблема оценки вероятности риска полета самолета включает в себя оценку роли каждого фактора риска, а также оценку их суммарной величины.
   Раньше при анализе риска катастроф мы шли снизу вверх. Этот путь обладает простотой, но не позволяет получить решение проблемы в целом, а только по отдельным каналам в условиях их независимости.
   Однако воздушное судно – это «организм», катастрофа которого, как правило, реализуется во взаимосвязи отдельных элементов, объектов, подсистем, систем.
   Для предотвращения летных происшествий, в том числе катастроф, созданы системы, включающие: конструкцию самолета, двигатель и бортовые системы, обеспечивающие эффективность и безопасность эксплуатации воздушного судна.
   Сложность построения теории катастроф воздушных судов обусловлена зависимостью события А – катастрофы воздушного судна от факторов риска
.
   Система управления безопасностью, цель которой – минимизация риска, включает множество подсистем контроля факторов риска на макро– и микроуровнях, создаваемых в процессе разработки и реализации воздушного судна на следующих уровнях:
   – стратегической системы (перспективное состояние);
   – тактической системы (теории обеспечения безопасности);
   – оперативной системы (полет: экипаж; СПКР…);
   – системы контроля (текущее состояние техники).
   Учитывая сказанное, а также материалы ИКАО, посвященные безопасности полетов, выделим следующие разделы анализа, необходимые для вероятностной оценки авиационных происшествий, включающих катастрофы.
   I. Факторы, влияющие на безопасность.
   1. Отказы системы.
   2. Активный отказ, скрытые условия для отказа.
   3. Недостатки в оборудовании.
   4. Человеческий фактор.
   5. Конструкция системы.
   II. Аналитические методы и инструменты анализа безопасности.
   1. Статистический анализ.
   2. Анализ тенденций.
   3. Нормативное сравнение.
   4. Моделирование и тестирование.
   5. Экспертная панель.
   III. Оценка безопасности полетов.
   1. Описание системы.
   2. Определение опасной ситуации.
   3. Оценка серьезности ситуации.
   4. Оценка вероятности того, что опасная ситуация будет иметь место.
   5. Оценка степени риска.
   6. Снижение риска.
   IV. Факторы, вносящие вклад в человеческие ошибки происшествия, аварии.
   1. Процедуры.
   2. Обучение.
   3. Личные факторы.
   4. Культура.
   5. Организационные факторы.
   6. Конструкция, оборудование.
   V. Цикл обеспечения безопасности.
   1. Выявление нарушения.
   2. Оценка риска.
   3. Оценка контроля.
   4. Коммуникации риска.
   5. Действие.
   6. Наблюдение за процессом.
   7. Выявление нарушения.
   Воздушное судно как система для реализации своей цели перемещается в пространстве внешней среды, где пересекается с другими системами, в силу погрешностей методов и средств контроля состояния воздушного судна и управления им при своем функционировании, создавая для ЛА риски R, в том числе катастрофы самолета. К таким системам относятся:
   1) система посадки аэродромная, аэродром;
   2) система управления воздушным движением (в том числе эшелонирование);
   3) системы контроля состояния воздушной среды;
   4) организации, включающие человеческий фактор, реализующие контроль и управление системами из пп. 1–3.
   При изучении авиационных катастроф будем определять области безопасных или допустимых Ωдоп состояний и опасных Ωоп состояний воздушного судна.
   Воздушное судно в области безопасных состояний способно выполнять, а в Ωоп не способно выполнять свое целевое назначение.
   Предпосылки летных происшествий, аварий, катастроф происходят тогда, когда воздушное судно находится в одной из областей Ωдоп, указанных на рис. 1.2.

   Рис. 1.2

   Область опасных состояний Ωоп включает следующие подобласти:
   – область Ωпр, где реализуются предпосылки летных происшествий, возвратных состояний в Ωдоп;
   – область Ωкр критических состояний, где реализуются аварии;
   – область Ωкат катастрофических состояний, где реализуются катастрофы.
   Из области Ωпр возможен выход либо в Ωдоп, либо в Ωкр. Из области Ωкр возможен выход в Ωпр либо в Ωкат. Из области Ωкат выход в Ωдоп невозможен.
   Отсюда следует, что катастрофа реализуется после отказа системы обеспечения безопасности в целом или ее отдельной подсистемы. Реализация отказа такой системы – это многоуровневый процесс, начинающийся в общем случае с микроуровня – отказа ее элемента, который завершается на макроуровне – отказом той системы, по вине которой возникает катастрофа, т. е. резкое (мгновенное) разрушение.
   В процессе предупреждения критической ситуации и вывода из критической ситуации на воздушном судне используются две взаимосвязанные системы контроля:
   – система контроля как подсистема интегрального комплекса бортового оборудования;
   – интеллектуальные системы экипажа, реализующего управление воздушного судна, при формировании которого экипажем используются информационные данные о состоянии воздушного судна, полученные от интеллектуальных систем.
   Информационные потоки на входе этих систем различные в случае, когда:
   – совершается установившийся или неустановившийся горизонтальный полет;
   – совершается неустановившееся пространственное движение.
   Как сказано выше, в случае неустановившегося пространственного движения, что характерно для движения после сваливания, системы контроля интегрального комплекса бортового оборудования не способны формировать достоверную информацию о параметрах траектории движения, и летчик вынужден доверять своей интеллектуальной системе.
   Рассмотрим качественную модель системы контроля, формируемую интегральным комплексом бортового оборудования и пилотом на структурно-функциональном уровне.
   Синтез системы представлен на рис. 1.3.
   На рис. 1.3 приведены следующие обозначения:
   U1 – управление ручное, сформированное экипажем;
   U2 – управление, сформированное бортовой системой автоматического управления;
   U3 – управление полем сил аэродинамического давления;
   x*изм – информация о состоянии поля сил аэродинамического давления;
   xизм – информация от бортовой системы контроля;
   ВС – воздушное судно.
   Сваливание обусловливает катастрофу, если выполняются следующие условия:

   α(t) > αдоп,

   где t
[t0,T]; Т – момент времени, когда высота полета Н = 0, а вертикальная скорость полета Vy больше некоторой величины V*y.

   Рис. 1.3

   В полете вектор аэродинамической силы R = (Ry,Rx,Rz), изменяясь, меняет траекторию полета:
   1) если Ry > R*y – набор высоты, R < R*y – потеря высоты;
   2) если Rx > R*x – ускорение, Rx < R*x – торможение;
   3) если Rz > R*z – движение в одну сторону, Rz < R*z – движение в другую сторону.
   Взаимосвязь между направлением и величиной сил Rx, Ry, Rz и осей ΧдYдΖд земной системы координат позволяет установить направление движения самолета и параметры движения, а также опасное или безопасное состояние воздушного судна.
   Роль пилота сводится к восприятию информации, последующей обработке (синтез) информации, включая анализ полученной информации и выработки решений по управлению воздушного судна.

1.1.4. Человеческий фактор в летных происшествиях. Пути нейтрализации ошибок

   В соответствии с результатами статистических исследований, проводимых в США, в настоящее время надежность пилота как оператора сложного человеко-машинного комплекса очень приближенно может быть оценена показателем: 4 ошибочных действия на 1 млн выполненных операций. Если предположить, что в течение каждого полета экипаж выполняет около 20 важных операций, неправильное выполнение которых может инициировать развитие опасных ситуаций, то, связывая эти величины с достигнутым в настоящее время уровнем безопасности в США (2,3 катастрофы на 1 млн полетов) и долей человеческого фактора в общем числе причин катастроф (75 %), нетрудно получить еще одну приближенную оценку, что 2 из каждых 100 ошибочных действий экипажа воздушного судна приведут к катастрофам.
   В наибольшей степени человеческий фактор проявляется в летных происшествиях, связанных с потерей пространственного положения, сваливанием, превышением установленных предельных ограничений (15 % от общего количества катастроф), а также связанных со столкновениями исправных воздушных судов с возвышенностями (также 15 % катастроф за период с 1958 по 2001 год). Основными причинами таких происшествий являются:
   – неумение экипажей выводить самолет из сложного пространственного положения;
   – неумение экипажей распознавать ненормальную работу пилотажно-навигационного комплекса;
   – отсутствие контроля за параметрами полета в процессе возникновения и развития особой ситуации;
   – неправильная работа с функциональными системами самолета, в том числе:
   – невключение авиагоризонтов перед взлетом;
   – невключение обогрева приемников полного давления;
   – запрещенная перекачка топлива в полете из одной группы баков в другую;
   – пропуск операций (невыпуск закрылков перед взлетом, нерасстопоривание рулей перед взлетом, невключение реверса тяги двигателей на посадке, невключение противообледенительной системы в условиях обледенения);
   – неправильное выполнение операций (неправильный ввод координат радиомаяка в вычислитель бортовой навигационной системы);
   – непреднамеренное включение или выключение той или иной функциональной системы в полете (выпуск интерцепторов на взлете, включение реверса тяги двигателя в воздухе, выключение питания авиагоризонта и др.).
   Следует отметить огромное значение психоэмоционального фактора в стрессовых ситуациях, которые возникают в процессе полета при неполадках, угрожающих опасной ситуацией и тем более катастрофой. При этом разрушаются стереотипы управления экипажем воздушного судна, наработанные в процессе обучения и полетов. Возможно, это является основной причиной того, что доля негативного влияния человеческого фактора на уровень безопасности полетов (75–80 %) долгие годы сохранялась во всем мире независимо от степени совершенства системы обучения.
   Согласно рекомендации Международного авиационного комитата по расширению комплекса технических средств, позволяющих свести к минимуму влияние перечисленных выше ошибочных действий экипажей воздушных судов, сюда относятся:
   – усовершенствованные световые и звуковые сигнализаторы режимов работы систем и выхода параметров за ограничения;
   – расширенная номенклатура бортовых устройств, подсказывающих экипажу необходимость выполнения определенных действий;
   – блокировки, предотвращающие неправильное использование систем;
   – активные средства вмешательства в парирование особых ситуаций.
   Программные мероприятия, направленные на снижение негативного влияния человеческого фактора на безопасность полетов:
   а) раннее предупреждение экипажа о возможности столкновения воздушного судна с землей за счет использования спутниковых навигационных систем и цифровых трехмерных карт местности;
   б) раннее предупреждение экипажа о возможности потери воздушным судном пространственной ориентации (в том числе о возможности сваливания) за счет более совершенных алгоритмов обработки информации по сравнению с реализованными в штатных системах типа автомата углов атаки и сигнализации перегрузок (АУАСП) и системы предупреждения критических режимов (СПКР), учета факторов, характеризующих конкретные условия полета;
   в) измерение массы и центровки воздушного судна на стоянке и в полете;
   г) автоматический контроль параметров разбега и взлета (скорости, ускорения, пройденного на взлетно-посадочной полосе расстояния) с выдачей сигнала на прекращение взлета при их несоответствии нормативным значениям;
   д) организация в рамках интегрированного комплекса авионики бортовой электронной библиотеки (электронное руководство по летной эксплуатации) с функцией автоматического контроля правильности выполнения экипажем нормативной последовательности операций по управлению воздушным судном на всех этапах полета;
   е) блокировка операций по управлению воздушным судном, которые могут привести к развитию осложненных ситуаций в катастрофические (например, блокировка отключения нормально работающих двигателей при отказе или пожаре в одном из двигателей);
   ж) предоставление экипажу воздушного судна информации, предупреждающей об опасности в более эффективных форматах, например замена штатной сигнализации АУАСП и СПКР на комплексную визуально-звуковую (в том числе речевую) сигнализацию с нарастающей интенсивностью по мере развития опасной ситуации, а также с сообщением о лимите времени до возможного катастрофического финала и с выдачей команд по его предотвращению.
   Сваливание есть один из основных факторов, когда роль пилота в предотвращении сваливания очень важна. Приведем причины сваливания.
   1. Наиболее часто возникают катастрофы по причине сваливания на этапах:
   – взлета;
   – посадки.
   2. Факторы, обусловливающие сваливание:
   – вертикальные потоки большой мощности на обе или одну несущую поверхность;
   – резко изменяется состояние поля сил аэродинамического давления и соответственно аэродинамические силы на несущих поверхностях ЛА.
   3. Не все параметры траектории, изменяющиеся в процессе сваливания, когда реализуется пространственное движение, контролируются бортовым комплексом.
   Так, информация J, поступающая пилоту, включает: θ, γ, β, ωx, ωy, ωz, однако угол атаки при этом не контролируется.
   На следующих этапах формируются погрешности контроля и управления.
   4. Полученная пилотом информация характеризует пространственное положение ЛА, а у него есть четыре органа управления: δрв, δэ, δрн, δдв, которые могут изменять аэродинамические силы несущих поверхностей, т. е. предотвращать сваливание.
   5. Одновременно на информацию Jф, получаемую пилотом от приборов, накладываются его собственные ощущения в виде информации Jизм о пространственном состоянии ЛА, формируемой его органами и анализируемой его интеллектуальной системой.
   В итоге формируются ошибки восприятия информации, роль которых в авиационных происшествиях следующая:


   6. На следующем этапе реализуется синтез цели, которую пилот создает для предотвращения сваливания. Синтез формируется разумом [16], представляющим собой биокомпьютер с соответствующей программой, формирующей образные пространственные модели взаимосвязи Jф(Jизм) и поля сил аэродинамического давления путем синтеза. Эта процедура реализуется практически мгновенно в силу свойств разума пилота. Однако формирование процедуры управления реализуется с ошибкой, роль которой в авиационных происшествиях приведена в таблице 2 [15].


   7. На следующем этапе предотвращения катастрофы пилот посредством аналитического ума (рассудка) формирует решение (анализ): каким органом управления, в какую сторону и на какую величину необходимо среагировать. Формируемая при этом ошибка, обусловливающая катастрофу, возрастает. Дело в том, что время запаздывания реакции аналитического ума в 30 000 раз превышает запаздывание разума. Кроме того, процесс анализа от разума сложнее для пилота, чем синтез. Это обусловлено уровнем его теоретических и практических знаний в области аэродинамики и динамики полета самолета.
   Ошибки, связанные с выработкой ошибочных решений, и их роль в различных авиациях приведены в таблице 3.


   Таким образом, в критической ситуации, исходом которой может быть катастрофа, летчик выполняет множество функций согласно своей интеллектуальной системе: целеполагания; целедостижения; целереализацию; целеконтроль. Интегральный комплекс бортового оборудования осуществляет контроль состояния воздушного судна на докритических режимах достаточно точно, а на критических режимах – с недопустимо большими погрешностями. В области критических состояний воздушного судна летчик, по существу, один на один со стихией. При этом они протекают достаточно быстро, а разнообразие параметров, характеризующих критические ситуации, велико.
   Возможности интеллектуальной системы пилота в катастрофической ситуации:
   – разум мгновенно оценивает ситуацию и формирует цель (время оценки примерно 0,0001 с);
   – аналитический ум (рассудок), реализующий цель в виде команд на отклонение δрв, δдв, δэ, δрн, одной или в комбинации срабатывает в 30 000 раз медленнее, чем разум, т. е. за время ~3 с.
   Полет ЛА осуществляется, как правило, с помощью двух информационно-аналитических центров: ИАЦ-1 и ИАЦ-2 (рис. 1.4). Информационно-аналитический центр человека (ИАЦ-1) рассмотрен в работах [14, 16], где указаны следующие ему присущие ограничения: по объему оперативной и долговременной памяти; по скорости обработки информации; по точности обработки информации; по наличию зоны нечувствительности.
   Под ИАЦ-2 будем понимать совокупность технических систем, подсистем, блоков, элементов, осуществляющих сбор и обработку информации с целью формирования управлений для достижения целей функционирования ЛА.

   Рис. 1.4

   ИАЦ-1 и ИАЦ-2 могут дополнять друг друга в полете, тем самым снижая стоимость бортового оборудования, расширяя область применения возможностей ЛА, что повышает выгоду от его использования. Что касается формирования управления, то ИАЦ-1 – система с заданными свойствами, которая обладает указанными выше ограничениями.
   Параметры технической системы ИАЦ-2 можно выбирать и причем оптимальным образом с учетом ограничений на ее возможности. Эту систему, в отличие от ИАЦ-1, мы можем создавать с нуля, в то время как ИАЦ-1 мы вынуждены воспринимать в основном уже созданной. Мы получаем два антипода, дополняющих друг друга. При этом параметры ИАЦ-1 можно изменять в достаточно широком диапазоне путем тренировок и обучения, однако основные физиологические параметры (быстродействие умственной деятельности, объем памяти и т. п.) мы не в состоянии существенно изменить.
   Объединяя ИАЦ-1 и ИАЦ-2 в единый комплекс, мы получаем новый ИАЦ, который лишен недостатков ИАЦ-1 и ИАЦ-2, т. е. каждого в отдельности. Проектирование совместного комплекса связано с определенными трудностями, так как требует:
   – подбора (в процессе обучения по специальным программам) экипажа с наилучшими возможностями с позиции достижения минимального технического риска и со свойственными ему физиологическими свойствами и ограничениями, параметры которых задают некоторую область Ω1;
   – проектирования самолета и двигателя как системы, свойства и параметры которых заполняют некоторую область Ω2, заданную инвестором;
   – проектирования бортового оборудования под этот комплекс, способного обеспечить надежное (устойчивое, безопасное, оптимальное) состояние и достижение цели полетного задания в области Ω2, т. е. при расширении области Ω1 до Ω2.
   При этом возможны различные ситуации, связанные с совместным проектированием комплекса с позиции минимизации потерь при эксплуатации, начиная от измерения параметров самолета и двигателя до разработки специальных для данного класса самолетов комплексов тренажеров, позволяющих осуществлять необходимую подготовку летчиков (доводку его ИАЦ-1 до необходимого состояния). По существу, здесь рассматривается идея проектирования с максимальным использованием самого дешевого продукта для эксплуатации ЛА – человека.
   В работах [14, 16] рассмотрен частный подход к решению задачи выбора параметров комплекса (рис. 1.4) с использованием одного критерия, связанного с энтропией системы. В общем случае необходимо использовать тот критерий, который связан с выполнением цели и назначения данного класса ЛА. Так, например, при проектировании комплекса следует учесть необходимость исключения летчика из контура управления, когда на вход ИАЦ поступают процессы высокой скорости изменения по амплитуде и частоте. С этой целью необходим анализатор входных сигналов xi:
   – по амплитуде и удаленности его от Ωдоп;
   – по скорости изменения xi;
   – по количеству сигналов, которые могут достигнуть Ωдоп.
   При этом необходимо осуществлять прогноз достижимости критической области [11].
   Несмотря на эти ограничения, рассмотренный подход может быть использован в качестве метода или методики в случае, если критерий уточнен, расширен в зависимости от целей и задач проектируемого ЛА, когда необходимо решать многокритериальные задачи.

1.2. Поле сил аэродинамического давления как источник опасных и безопасных состояний самолета

1.2.1. Аэродинамические системы. Структурно-функциональные свойства аэромеханического контроля

   Динамические системы, создающие аэродинамические силы и моменты для достижения заданной цели, будем называть аэродинамическими системами. Сюда относятся: самолеты, вертолеты, крылатые ракеты. Аэродинамические системы – это объекты, наделенные аэродинамическими характеристиками, определяющими принцип их функционирования, в том числе возможность, безопасность и экономичность их реализации. Таким образом, мы выделяем особый тип объектов, обладающих заложенным в него при его создании особым способом реализации цели – путем создания поля сил аэродинамического давления (ПСАД), которое контролируется и управляется так, чтобы отклонение от цели в каждый момент времени его параметров траектории было минимальным.
   Из всех динамических систем, созданных и эксплуатируемых человеком, наиболее сложной является самолет. Проблема риска и безопасности для этого класса динамических систем была и остается наиболее актуальной. Аэродинамические системы, включающие: крыло, горизонтальное и вертикальное оперения, руль высоты, руль направления, элероны, закрылки, предкрылки, обладают определенной для этого класса динамических систем структурой, приведенной на рис. 1.5. На рис. 1.5 приведены следующие обозначения:
   Lp, mp – расчетные дальность полета и масса самолета;
   Lф, mф – фактические дальность полета и масса самолета соответственно;
   Lизм, mизм – измеренные дальность полета и масса самолета;
   ρ – плотность воздуха;
   Wx, Wy, Wz – проекции вектора скорости ветра на оси, связанной с самолетной системой координат.
   На рис. 1.5 представлена структура аэродинамической системы на макроуровне. Каждая из четырех подсистем (1–4), включенных в структуру, включает системы на микроуровне, функциональные свойства которых необходимо контролировать и поддерживать на заданном уровне. В противном случае происходит потеря функциональных свойств, и в итоге динамическая система не способна выполнять поставленную цель.
   Особая роль принадлежит подсистеме 2 реализации цели, включающей конструкции несущих поверхностей. Конструкция несущих поверхностей выполняет одну из основных компонент реализации цели – создает поле сил аэродинамического давления, обеспечивая целевое перемещение самолета в пространстве. При этом конструкция, двигатель и бортовое оборудование обладают необходимыми свойствами.

   Рис. 1.5

   Создав ПСАД, конструкция самолета воспринимает необходимые для реализации целевого перемещения самолета силы и моменты. Особенности конструкции несущих поверхностей отвечают особенностям целевого назначения данного самолета. В свою очередь особенности конструкции порождают особенности структуры поля сил аэродинамического давления, переменного во времени и в пространстве. Взаимодействие конструктивных характеристик и создание ими в полете характеристик ПСАД обусловливают необходимость управлять и ограничивать аэродинамические силы и моменты, следовательно управлять ПСАД.
   Рассмотрим роль и место ПСАД на качественном структурно-функциональном уровне в системе аэромеханического контроля и управления векторами аэродинамических сил R = (X, Y, Z) и моментом M = (Mx, My, Mz), где X, Y, Z – проекции вектора аэродинамической силы на связанные с самолетом оси координат; Mx, My, Mz – проекции вектора аэродинамического момента на связанные с самолетом оси координат.
   На рис. 1.6 представлена структура физической модели процессов образования, контроля и управления полем сил аэродинамического давления с целью реализации заданной траектории движения. Отметим, что для управления полетом (движением) самолета необходимо знать результирующие аэродинамические силы и моменты, которые реализуются в процессе силового взаимодействия воздушной среды и самолета при разных скоростях и направлениях его движения.
   В полете для управления, т. е. формирования потребных величин R и М и соответствующих им фактических параметров траектории движения xф = (x1,…,xn)ф, производится контроль фактических значений Rф и Мф и сравнение их с теоретическими (потребными) значениями RТ и МТ. При этом нам необходима информация о процессах хф, посредством которой формируются потребные углы отклонения органов управления с целью компенсации отклонения Rф, Мф от RТ, МТ. С помощью современных средств возможно измерение x*(t) = xизм = хф + δx*, где δх* – погрешности измерения х*. При этом достоверный контроль x(t) с помощью современных средств возможен только в горизонтальном установившемся полете, когда xx*.

   Рис. 1.6

   Чем дальше мы уходим от установившегося горизонтального полета, тем больше возникает отличие х* от х, тем больше имеют место погрешности в оценке аэродинамических сил R и моментов М.
   На рис. 1.6 имеют место следующие соотношения:
   1) измеренные значения аэродинамических сил:

   R(1)изм = + δ + δ; R(2)изм = + δ,

   где δRм, δRи – погрешности измерения R методические и инструментальные соответственно;
   2) фактические значения аэродинамических сил и моментов:

    = + δR*м; Мф = Мт + δМ*м,

   где δRм, δМ*м – методические погрешности, обусловленные несоответствием методов и средств идентификации R и М в полете;
   3) x = (α,β,,…) = (x1,x2,x3,…);
   4) y(t) = (Hg,Xg,Yg,Zgхyz,…) = (у1, у2, у3,…),
   где Hg, Χg, Yg, Ζg – высота полета и проекции положения координаты центра тяжести самолета на земные оси координат OXд, OYд, OZд соответственно; ωx, ωy, ωz – угловые скорости вращения самолета относительно осей OX, OY, OZ связанной системы координат;
   5) 
,
   где Δx(·) – отклонение параметров возмущенного потока х* от параметров невозмущенного потока х; h – расстояние от несущих поверхностей самолета, измеренное, например, по нормали; – точка на несущей поверхности самолета;
   6) Ωдоп(x) = Ωдоп(x*) + δΩдоп,
   так, например, для угла атаки получим αдоп(x) = αдоп(x*) + δα;
   7) Ωкр(x) = Ωкр(x*) + δΩкр.
   При этом, начиная с некоторого расстояния h от несущих поверхностей, параметры потока получают возмущение, и при приближении к несущим поверхностям они увеличиваются, максимальная величина их достигается на поверхности, например, крыла. Таким образом, в системе аэромеханического контроля решается обратная задача – аэродинамическая. Здесь задано поле аэродинамического давления P(S,h,t), его величина в ограниченном числе точек на поверхности S; требуется определить параметры х невозмущенного набегающего потока. Отметим, что прямая задача связана с определением поля аэродинамического давления (сил и моментов), если известны параметры невозмущенного потока, в которое погружены несущие аэродинамические поверхности.
   Согласно отмеченному в п. 1, система управления получает на вход с выхода двух систем контроля величины R(1)изм и R(2)изм, отличающиеся на методическую погрешность функционирования систем контроля Rм. Система управления обеспечивает RT = R(1)изм и RT = R(2)изм. В первом случае получаем = RТ + (δ + δ), во втором – = RТ + δRи. Величина методической погрешности δ, как правило, существенно больше δRи. По этой причине погрешности управления существующих систем контроля и управления больше.
   Для реализации безопасного полета необходимо организовать такое взаимодействие конструкции, обладающей соответствующими характеристиками, и созданного ею ПСАД, при которых выполняется поставленная цель. Особая роль принадлежит подсистеме 3 (рис. 1.5), посредством которой формируется ПСАД для реализации заданной цели на макроуровне, включая: реализацию траектории движения, обеспечение устойчивости, управляемости, реализацию управлений. Структура подсистемы 3 практической реализации цели представлена на рис. 1.7. Здесь обозначено: хдоп – допустимое значение х; xi(3) – заданное значение параметра хi.
   Контролю и управлению подлежит совокупность параметров, включающих:
   1) параметры, характеризующие цель (например, дальность полета L, высоту полета Н, скорость полета V и т. п.);
   2) параметры траектории, с помощью которых задаются области допустимых или безопасных ее состояний (α, V, ny, ωx, ωy, nx, …), где nx, ny – проекции вектора перегрузки на оси ОХ, OY соответственно;
   3) параметры траектории полета, используемые при оптимизации эффективности применения техники.

   Рис. 1.7

   Два основных фактора – поле сил аэродинамического давления и связанный с ним вектор тяги двигателя – задают фактические значения параметров траектории. Проблема контроля над состоянием ЛА связана с контролем над состоянием поля аэродинамического давления на несущих поверхностях, дабы предотвратить:
   – разрушение конструкции;
   – выход в область критических режимов полета.
   Согласно приведенной структуре с функциональными свойствами подсистем Ф1, Ф2, Ф3, Ф4, для того чтобы аэродинамическая система способна была осуществлять реализацию заданной цели, она должна содержать из области допустимых значений такие показатели, как:
   – идентифицируемость (α1);
   – управляемость (α2);
   – наблюдаемость (α3);
   – устойчивость (α4): устойчивость во внешней среде, т. е. траекторию (α41); устойчивость во внутренней среде (α42).
   Таким образом, имеют место следующие допустимые множества, порожденные αi α:

   Ωдоп = Ωдоп(α1,α2,α3,α4);
   Ω(1)доп = Ω(1)доп(α41); Ω(2)доп = Ω(2)доп(α42); Ω(3)доп = Ω(3)доп(α43).

   При этом имеют место три уровня допустимых состояний аэродинамической системы:
   – область допустимых состояний Ω(1)доп есть множество значений х, в которой соблюдается устойчивость фазовых траекторий;
   – область Ω(2)доп, в которой соблюдается функциональная устойчивость подсистем аэродинамической системы;
   – область Ωдоп, в которой реализуется структурная устойчивость аэродинамической системы, обеспечиваемая прежде всего ресурсным потенциалом всех ее подсистем.
   Представим области допустимых состояний для аэродинамической системы в явном виде, задав их в виде неравенств.
   I. Параметры траектории полета х = (х1,…,х7) включают нижеследующие.
   Дальность полета х1 = L(Т) ≥ Lз, где Lз – заданная дальность полета; Т – время полета. При этом Lз = Lз(H3,V3,q3,α3,n3y,M3,m3); Lф = (Hф,Vф,qф,αф,…) – фактическая дальность полета; Hф, ,… – фактические значения параметров траектории; Hз, Vз,… – заданные значения параметров траектории; – скоростной напор; nзy – заданная величина перегрузки.
   Высота полета х2 = Нф (рис. 1.8): Н1 ≤ НФН2, где Н1, Н2 – минимально и максимально допустимые значения высоты полета.
   Скорость полета х3 = Vф > Vдоп.
   Скоростной напор
, где ρ – плотность воздуха на высоте полета.
   Число Маха х5 = МфМдоп.
   Угол атаки крыла х6 = α: α1 ≤ αф ≤ α2.
   Перегрузка x7 = n по вертикальной оси


   где Y, Pр, α – подъемная сила, тяга двигателя, угол атаки соответственно.
   В общем случае: α1, α2, Н1, Н2, Vдоп, qдоп, Mдоп, nу доп – функции таких параметров траектории, как скорость полета V, высота полета Н, число Маха.

   Рис. 1.8

   II. Устойчивость возмущенного движения.
   Область Ω(1)доп устойчивости возмущенного движения в первом приближении строим, используя линеаризованные уравнения движения вида
= Ах, где А = [aij]nxn – матрица с постоянными элементами аij. При этом должно соблюдаться неравенство mijaijMij, где mij, Mij зависят от конструктивных параметров аэродинамических поверхностей, создающих ПС АД; aij = f(B,X0), где В – конструктивные параметры самолета, характеризующие его внутренние свойства; Х0 – начальные значения параметров траектории.
   Взаимосвязь аij и (B,X0) устанавливается следующим способом: аij такое, что γS < λ0
, где λ0 – некоторое заданное отрицательное число, а γS = λS; λS – корни характеристического уравнения (в общем случае комплексные) для матрицы А, при этом


   Когда скорость полета возрастает, вещественная часть одного из λS → 0 и становится при некоторой Vкр равной нулю. Тогда самолет становится неустойчив, т. е. покидает область допустимых состояний.
   III. Параметры управляемости, обусловленные свойствами ПСАД (качество переходного процесса).
   Допустимая величина перерегулирования по перегрузке а1 = maxΔny(t), t
[0,T], должна удовлетворять следующему неравенству:

   a12 ≤ a1 ≤ a11,

   где а12, а11 – заданные величины из условия прочности и быстродействия.
   Время tср срабатывания автомата по перегрузке, при котором впервые выполняется равенство:

   Δny = (1 – εn)(Δny)уст,

   где (Δny)уст – приращение перегрузки nу в установившемся движении; εn > 0, заданная малая величина, должна принадлежать об-ласти допустимых значений Ωдоп, удовлетворяя неравенству

   (tср)2 ≤ tср ≤ (tср)1,

   где (tср)1, (tср)2 – заданные величины.
   Время tn переходного процесса по перегрузке попадания Δny в «трубку» | Δny – (Δny)уст | ≤ εn, где εn > 0 – заданная величина. На tn налагается ограничение tn ≤ (tn)max.
   Применение информации о поле сил аэродинамического давления в системах контроля и управления особенно необходимо при полете:
   1) на малой высоте, при взлете или посадке в условиях резкой смены направления ветра:
   – со встречного на попутный;
   – с нисходящих потоков на восходящие;
   2) в условиях, когда возможно сваливание с переходом в штопор, например при пространственных маневрах;
   3) в условиях пространственного неустановившегося движения высокоманевренных самолетов с целью обеспечения безопасности;
   4) в условиях существенного изменения массы и центровки самолета с целью обеспечения оптимального расхода топлива и безопасности полета.
   Отметим особенности обеспечения безопасности полета параметров траектории, зависящих от ПСАД. Создавая системы контроля, человек всегда шел по пути их упрощения. Так, например, с целью предотвращения критических значений поля сил аэродинамического давления на несущих поверхностях он измерял угол отклонения флюгарки и скорость полета с помощью приемника воздушного давления (ПВД), обеспечивая тем самым минимальные затраты на систему контроля.
   Все это было возможно на заре авиации. Дело в том, что такие средства контроля, как флюгарик, ПВД измеряют локальный угол атаки и скорость (α*, V*) вне поля сил аэродинамического давления, т. е. когда х не принадлежит области Ω, в которой действует давление Р, подлежащее контролю, управлению и ограничению. В связи с этим (α*,V*) = х
Ω(Р) и отличается от (α,V) = y
Ω(P) на величину Δx = x y. При этом у – это истинные значения (α,V), а х – измеренные, обладающие методическими погрешностями δ. Эти погрешности стремятся к нулю, когда ЛА совершает установившееся горизонтальное движение. Во всех остальных режимах δ≠ 0 и достигает максимальное значение в неустановившемся пространственном движении. Было совершено множество исследований по созданию модели учета возмущающих факторов от поля аэродинамического давления, создаваемого самолетом в пространстве на показания флюгарика и ПВД. Пока эти исследования привели к невозможности учета влияния и компенсации методических ошибок, создаваемых при контроле с помощью ПВД и флюгарика.
   Таким образом, ограничение параметров траектории самолета хi (обеспечение безопасности полета) состоит не только в разработке средств контроля хi и управления, но и в учете погрешностей средств контроля, уменьшения их, поскольку уменьшение δxi обусловливает расширение области допустимых значений хi, т. е. Ωдоп(xi).
   Целесообразность разработки и применения систем аэромеханического контроля широко просматривается в современной авиации:
   – контроль над массой и положением центра масс, например, транспортных самолетов;
   – контроль над тягой несущего винта вертолета, например, при взлете и посадке в горах; контроль над минимальной скоростью вертолета при посадке;
   – обеспечение минимального расхода топлива на различных режимах полета;
   – контроль над флаттерным режимом крыла, управление с целью увеличения скорости полета.

1.2.2. Характерное поведение самолета при больших углах атаки

   Увеличение тактического преимущества самолета и улучшение его маневренности может быть достигнуто за счет расширения эксплуатационной области углов атаки. Расширение этой области не может быть осуществлено без использования автоматических систем предотвращения сваливания и штопора. В историческом плане сначала появились системы вывода из штопора, однако в связи с необходимостью решения задачи пилотирования вблизи критических режимов стали интенсивно развиваться приемы предотвращения сваливания как в форме применения систем улучшения устойчивости и управляемости, так и в форме предупредительной сенсорной сигнализации (световой, тактильной).
   Для самолетов характерным является большое разнообразие естественных признаков предупреждения летчика о подходе к началу сваливания. Это, например, самопроизвольное боковое движение самолета, воспринимаемое летчиком как колебания по крену; самопроизвольные колебания по тангажу; самопроизвольное поперечно-путевое движение, воспринимаемое летчиком как дивергенция рыскания; самопроизвольное внезапное увеличение угла тангажа θ.
   При превышении допустимых углов атаки в процессе сваливания возможны несколько режимов дальнейшего движения:
   – сваливание – режим полета с большой амплитудой движения по азимуту ψ или по углу атаки α, при которых происходит полная потеря управляемости;
   – вращение после сваливания, представляющее собой произвольное движение самолета, когда отсутствует основное установившееся движение рыскания с постепенным уменьшением угла атаки;
   – глубокое сваливание, при котором полет становится неуправляемым с большими углами атаки, малыми скоростями вращения (высокая скорость снижения и отсутствие заметных вращательных движений);
   – штопор – движение с установившейся скоростью рыскания на больших углах атаки; при этом могут накладываться колебания по тангажу, крену, рысканию.
   Характеристики режима штопора оказываются разнообразными для сверхзвукового самолета. Так, у одного и того же самолета они могут быть различными в зависимости от начальных условий ввода, продолжительности штопора, положения рулей элеронов в штопоре и т. д. Таким самолетам присуща большая неравномерность движения и большие колебания в штопоре. Все это значительно усложняет проблему борьбы с тем комплексом явлений, которые предшествуют штопору и его сопровождают, приводит к усложнению систем управления и обеспечения безопасности.
   Улучшение характеристик устойчивости и управляемости современных маневренных самолетов на больших углах атаки развивалось в следующих направлениях:
   – повышение статической и динамической поперечной и путевой устойчивости;
   – увеличение эффективности органов управления;
   – уменьшение моментов рыскания при управлении по крену.
   Достижению хороших показателей устойчивости и управляемости способствуют, в частности, такие средства, как: введение перекрестных связей в каналах «крен – рыскание», зависящих от угла атаки и числа Маха М; изменение конфигурации крыла, например, путем отклонения передней кромки с достаточно высоким темпом; коррекция закона демпфирования в процессе увеличения угла атаки. Так, например, отключение демпфера крена при подходе к режиму сваливания на некоторых самолетах ослабляет тенденцию к сваливанию.
   Системы увеличения устойчивости и управляемости обеспечивают увеличение сопротивляемости самолета к сваливанию и расширение области эксплуатационных режимов полета, улучшают управляемость, уменьшают рабочую нагрузку летчика и создают предпосылки для достижения тактического преимущества в воздухе при маневрировании на больших углах атаки [3, 8]. Для построения эффективных систем предупреждения сваливания необходимо прежде всего знание аэродинамики конкретного самолета при его полете на больших углах атаки, то есть вблизи критической области.
   Основными аэродинамическими параметрами, характеризующими поведение самолета на больших углах атаки, являются [3, 8]: коэффициенты перекрестных демпфирующих моментов, коэффициент демпфирования крена
; коэффициенты mxδэ, myδэ эффективности элеронов δэ по крену и рысканию; коэффициенты mβx и mβy поперечной и путевой устойчивости по углу скольжения β; коэффициенты
демпфирования и момента рыскания, обусловленного креном. Кроме того, большое значение имеют коэффициенты подъемной и боковой сил Cy(α) и Cz(β) соответственно.
   Предпринятые в США в 1977 году испытания по определению аэродинамических сил и моментов, действующих на самолет на больших углах атаки, показали существенную зависимость продольных и боковых сил от угла скольжения [6]. Эта зависимость носит нелинейный характер и определяется геометрическими размерами самолета. Было выявлено чрезвычайно важное обстоятельство, заключающееся в неаддитивном характере совместного действия управляющих сил и моментов. Известно значительное влияние отклонения стабилизатора на путевую устойчивость истребителя, однако зависимость характера этого влияния от аэродинамической схемы самолета еще недостаточно изучена. Зависимость производных демпфирования от угла атаки носит сложный характер. Вышеперечисленные сведения получения аэродинамических характеристик существенно затрудняют аналитическое исследование динамики движения самолета при больших углах атаки. Поэтому наиболее целесообразным путем анализа динамических свойств самолета на больших углах атаки является аэродинамический эксперимент, подкрепляемый летными исследованиями базовых моделей самолета, и поиск возможностей сведения общей модели самолета к совокупности нескольких частных, более простых, с точки зрения анализа, моделей. Таким путем была получена аэродинамическая компоновка самолетов F-16 и F-17, включающая базовую форму крыла в плане с умеренной стреловидностью, большой величиной концевой хорды, что обеспечивает относительно небольшое индуктивное сопротивление, хорошие срывные характеристики. При этом за счет наплыва крыла и введения механизма изменения кривизны крыла на малых и околозвуковых скоростях были улучшены характеристики устойчивости самолета на больших углах атаки. Испытания показали эффективность примененного подхода.
   Аналитические исследования динамики движения самолета при больших углах атаки ведутся по нескольким направлениям, к важнейшим из которых относятся: разработка приближенных критериев для оценки углов атаки начала сваливания; разработка различных мероприятий по улучшению характеристик сваливания и штопора; синтез аналитических моделей движения в штопоре и выявление влияния аэродинамических и массовых характеристик на движение самолета в штопоре.
   Введем понятие угла атаки начала сваливания αсв самолета. Поскольку математическое определение дать трудно, в дальнейшем, по мере необходимости, это понятие будет уточняться. При постоянных значениях скорости полета и других параметрах движения, соответствующих нормальному состоянию полета, этот угол может определяться как наименьший из следующих:
   – угла атаки при наибольшей нормальной к траектории полета установившейся перегрузке, которая может быть получена при данном числе М полета;
   – угла атаки при данном числе М, при котором возникает интенсивная тряска.
   Угол атаки начала сваливания в настоящее время оценивается рядом критериев, которые накладывают, например, следующие ограничения на аэродинамические коэффициенты [6]:
   – на коэффициент динамической путевой устойчивости


   – на коэффициент поперечной управляемости

   –mβxmyδэ/ mxδэ ≥ 0; (1.2)

   – на коэффициент взаимодействия элеронов и руля управления


   – на коэффициенты взаимодействия


   где коэффициент k2 = δрнэ; mβy, mβx, myδэ, mxδэ,
 – частные производные от соответствующих коэффициентов по β, δэ, δрн; Jx, Jy – моменты инерции относительно осей OX и OY соответственно; δрн, δэ – углы отклонения руля направления и элеронов соответственно.
   Проверка указанных критериев в эксперименте показала хорошую сходимость аналитических (неравенства (1.1)–(1.4)) и опытных результатов. Например, определенная по критерию (1.1) величина угла атаки α для самолета F-4E имела погрешность не более двух градусов. Остальные критерии применялись при расчетах для самолетов А-7, А-10, F-16, F-111 и также показали удовлетворительное совпадение. Для самолетов типа А-7 с различными геометрическими формами эффективными оказались критерии, связанные с характеристиками изменения производных
.
   Аналитические модели движения самолета на больших углах атаки могут быть построены с использованием ограниченных данных, полученных при статических испытаниях или при испытаниях методом вынужденных колебаний [22]. Однако эти данные лишь приблизительно отражают истинную картину обтекания самолета на больших углах атаки. Они адекватны истинной модели движения лишь на отдельных этапах полета. Кроме того, аэродинамические характеристики, получаемые различными методами, должны быть соотнесены с отдельными фазами движения самолета. Например, данные статических испытаний в аэродинамических трубах корректны только для этапа установившегося движения при отсутствии вращения, а данные, получаемые методом установившегося вращения, соответствуют только режиму установившегося штопора. Соответственно, при использовании значений аэродинамических коэффициентов, получаемых методом вынужденных колебаний, не учитываются особенности обтекания в статических условиях. Таким образом, основная идея аналитического изучения движения самолета на больших углах атаки сводится к дискретному набору математических моделей, отличающихся как видом используемых уравнений, так и различными значениями аэродинамических коэффициентов, причем каждая из моделей применяется на различных режимах движения самолета от взлета до посадки.
   Проблема детального исследования аэродинамических параметров при движении самолета на больших углах атаки является актуальной. Теоретические исследования движения при развившемся колебательном штопоре должны, по-видимому, иметь ограниченный характер из-за чрезвычайной сложности получения и практической недостоверности аэродинамических данных на этом режиме.
   Исследование влияния аэродинамических и массовых характеристик на факторы ввода и движения в штопоре представляет собой важный этап построения аналитических моделей движения самолета на больших углах атаки. Имеющиеся данные [22] позволяют привести некоторые результаты влияния этих характеристик на штопор:
   – на штопор оказывает значительное влияние эффективность органов поперечного управления, например, отрицательная величина отношения myδэ / mxδэ способствует развитию плоского штопора;
   – влияние величины mβx существенно в том смысле, что для любого распределения массы самолета существует минимальное значение, ниже которого штопор развиться не может;
   – значительное инерционное взаимодействие тангажа и рыскания (распределение массы по фюзеляжу) предрасполагает ко входу в плоский штопор;
   – для современных самолетов характерным является большое значение конструктивного параметра относительной плотности μ, равное нескольким десяткам, что повышает колебательность самолета в штопоре, вывод из которого в данном случае затруднен;
   – оптимальным способом вывода из штопора самолетов современных геометрических форм с равномерным распределением масс по фюзеляжу считается такой, при котором руль направления отклонен против вращения, элероны – по направлению вращения, руль высоты находится в нейтральном положении.

1.3. Поле сил аэродинамического давления как источник критических режимов полета

   Проблема обеспечения энергетическо-силового баланса в нестандартном режиме полета связана с обеспечением безопасного полета. Эта проблема обусловлена влиянием на ПСАД: внешней среды, включающей восходящие и нисходящие воздушные потоки; пространственными маневрами, создаваемыми полем сил аэродинамического давления органов управления при их отклонении.
   Принципиальное значение имеет взаимосвязь и взаимовлияние аэродинамических и инерционных сил при больших угловых скоростях ωx, ωy, ωz, при контроле и управлении полетом при резком маневрировании. Важная прикладная задача обеспечения безопасности полета включает контроль и ограничение вектора аэродинамической силы R = (Rx,Ry,Rz), где Rx, Ry, Rz – проекции вектора R на координатные оси; Ry = Y; Rx = X; Rz = – соответственно на оси OY, OX, OZ.
   Как только мы ограничиваемся вектором R, мы рассматриваем ЛА как материальную точку, что снижает точность обеспечения безопасности полета. Возможен иной подход, когда система с распределенными параметрами в виде несущих поверхностей ЛА, на которые воздействует поле сил перепадов аэродинамического давления p(x,z,t), заменяется на систему с квазираспределенными параметрами R = (R1,R2,R3,R4,R5), где R1, R2 – вектор аэродинамической силы на левой и правой полуплоскостях; R3 = Rэ, R4 = Rн, R5 = Rв – соответственно R от элеронов, руля направления и высоты (рис. 1.9).

   Рис. 1.9

   В дальнейшем будем выделять следующие характеристики поля сил аэродинамического давления:
   – интегральные характеристики ПС АД в виде: аэродинамических сил и моментов (X, Y, Z, Mx, My, Mz) или соответствующих им коэффициентов аэродинамических сил и моментов (Сx, Сy, Сz, mx, my, mz);
   – локальные характеристики ПСАД:

   (Сx(zj), Сy(zj), Сz(zj)), (mx(zj), my(zj), mz(zj)),

   величины которых вычислены в сечениях zj по размаху крыла;
   – точечные характеристики ПСАД p(xi, zj, t), равные, в частности, перепаду давлений в точках (xi, zj) поверхности крыла.
   В условиях стационарного движения центр давления и равнодействующая аэродинамическая сила R неизменны, и мы можем использовать это в системах контроля, например, α и V. При этом поле аэродинамических давлений и порожденное им поле аэродинамических сил одинаково и симметрично на полуплоскостях, что позволяет строить системы контроля и управления с использованием материалов продувок и расчетов.
   В случаях нестационарных движений, пространственных маневров либо и того, и другого вместе ситуация существенно изменяется. При этом информация от систем контроля становится неадекватной. Так, например, одним и тем же углам атаки в стационарных и нестационарных условиях соответствуют различные R и точки их приложения. В этих условиях в отличие от стационарных необходимо пересматривать не только функциональные соотношения для параметров контроля, но также и области их допустимых значений. Самое главное – одним и тем же отклонениям органов управления соответствуют различные отклонения параметров траектории, так как одному и тому же углу атаки соответствуют различные значения поля аэродинамических давлений и аэродинамических сил.
   В динамическом режиме полета поле аэродинамического давления порождает аэродинамические силы, которые характеризуются энергетическим потенциалом не только на поверхности, но и на некотором удалении от поверхности, создавая неконтролируемое влияние на приемники информации. В связи с этим в динамическом режиме возникают непреодолимые трудности устранения методических ошибок. Существенным моментом при этом является имеющая место зависимость коэффициента подъемной силы:

    = (α, β, M, Wx, Wу, Wz, δрв, δрн, δэ, t),

   и соответственно опасные состояния самолета, которые характеризуются многофункциональными областями:

   Ωкр = Ωкр (Cy, mz, mx, my),

   где mx, mz, my – моменты относительно осей X, Y, Z соответственно; Wx, Wy, Wz – горизонтальная, вертикальная, боковая по оси ОZ составляющие потока воздуха в месте установки датчиков системы контроля.

Особенности ПСАД при пространственном движении

   При несимметричном полете, например полете со скольжением, или наличии достаточно больших возмущений ПСАД приобретает сложную форму (отличную от горизонтального полета), которая зависит от параметров траектории полета. При этом возникают перекрестные связи в образовании ПСАД, что обусловливает зависимость момента крена и момента рыскания от угла атаки. Аналогично для подъемной силы Y = Ry и продольного момента Мz необходимо учитывать влияние скольжения.
   Как правило, при анализе возмущенного движения самолета пользуются приближенными линейными аппроксимациями вида [6]:
   – для коэффициента момента крена


   – для коэффициента продольного момента

   mz = mαz · α + C1β;

   – для коэффициента подъемной силы

   Cy = Cαy · α + C2β,

   где С1, С2 – постоянные величины;


   Сказанное указывает на наличие аэродинамического взаимодействия бокового и продольных движений. Такое взаимодействие в некоторых режимах полета существенно, и тогда линейная аппроксимация (1.5) обладает недопустимыми погрешностями контроля, создавая опасные состояния (режимы полета).
   В случае, когда необходимо решать такие задачи, как:
   – анализ безопасности полета на посадке (взлете) при резкой смене ветра со встречного на попутный;
   – анализ статистической нагрузки при оценке ресурса;
   – анализ безопасности реализации пространственного динамического режима полета;
   – анализ безопасности полета в области скоростей вблизи скорости флаттера,
   необходимо уравнение движения центра масс и относительного центра масс


   где
 – вектор скорости движения ЛА в инерциальной (земной) системе координат OXд, OYд, OZд;
 – вектор аэродинамических внешних сил;
 – вектор сил тяжести;
 – вектор момента количества движения;
 – вектор аэродинамического момента внешних сил относительно центра масс, дополнить в общем случае уравнениями, описывающими изменения ПСАД во времени и пространстве, вида


   где р(·),
 – соответственно давление, скорость и ускорение его изменения по времени в произвольной точке на поверхности самолета;
– производная по пространственной координате x.
   Отметим, что правые части (1.6) включают параметры ПСАД, характеризующие движение самолета относительно воздуха (воздушная скорость
, угол атаки α). Левые части уравнений (1.6), учитывающие инерционные силы и моменты, зависят, например, от скорости движения относительно Земли, т. е. путевой скорости полета. В общем случае они не равны. Приравнивая их, мы допускаем ошибки в системах контроля, формируя их и выдерживая параметры траектории в области допустимых состояний.
   Рассмотрим модель ПСАД в случае, когда перепад давления рj(·) рассматривается в n точках на поверхности крыла. При этом будем полагать pj(·) = pj(t,x;Cα), где x = (x1,…,xN), а искомые распределенные функции р1(t,x;Cα), р2(t,x;Cα) рассматриваются как решения системы из n уравнений, определенных в пространстве RN, с координатами x = (x1,x2,…,xN) вида


   где Cα – параметрическая функция конструкции, реализующая управления.
   Переменные рj включают пространственные хс и временные t координаты, в том числе ωx, ωу, ωу, α, β, M и т. д.
   Решения pj описывают состояние поля сил аэродинамических давлений, поэтому их можно называть переменными состояния. Предполагается, что Fi зависят от k параметров Cα, включающих отклонения органов управления самолетом δрв, δрн, δэ, δз, δпр – соответственно руля высоты, руля направления, элеронов, закрылков, предкрылков, в том числе числа Рейнольдса и т. п. Эти параметры называются управляющими.
   Область интегрирования
по пространственным координатам задается исходя из дополнительных соображений. Проблема анализа (решения) системы (1.10) чрезвычайно сложна, и, как правило, при этом используются различные предположения. Одним из таких путей является выделение следующих режимов полета:
   1) стационарный: p ≠ 0;
;
   2) квазистационарный: р(·) ≠ 0;
;
   3) динамический: р(·) ≠ 0;
.
   В стационарном режиме полета коэффициент подъемной силы Су в сечении Z по размаху крыла записывается в виде:


   выделяют критический режим полета, например при > Cусв.
   В квазистационарном режиме полета,


   выделяют критический режим полета, например при > (nукр).
   В динамическом режиме полета,

    = (zx,,ωуz,…),

   выделяют критический режим полета, например при пространственном маневре.
   Проблема состоит в упрощении математической модели самолета (1.10) без потери точности. Одним из важнейших путей является переход от системы с распределенными параметрами к системе с квазираспределенными, например к (z), где – сечение по размаху несущей поверхности. Преимущество такого подхода: возможность построения Ωдоп(ny,V,α,Vфл) в процессе полета на всех режимах, где Vфл– скорость флаттера крыла самолета.
   Рассмотрим примеры в качестве иллюстрации сказанного.
   1. Если при кренении во время полета угловая скорость ωx направлена в одну сторону, а увеличение ΔCy = Cy пр Cy лев – в другую, то начался хаос, нет регулярной динамики, и управление необходимо формировать согласно не общим закономерностям, а с учетом особенностей обтекания. Так, например, в обратную сторону при штопоре, когда необходимо нейтрализовать вращение.
   2. Скос потока от крыла на оперении. Необходимо учитывать запаздывание в образовании на оперении скоса потока. Как правило, запаздывание происходит в образовании подъемной силы на горизонтальном оперении, создаваемой вертикальными порывами, по сравнению с образованием ее на крыле.
   3. Динамика изменения ПС АД p(·) обусловливает динамику нагрузок на конструкцию. Так, в момент входа в вертикальный порыв ветра (предполагая, что нестационарность обтекания крыла отсутствует) p(·) максимально возрастает, затем уменьшается за счет появления вертикальной скорости у самолета.
   4. При возрастании числа Маха от 0 до 1 при входе крыла в вертикальный порыв ветра ( = 12 м/с) величина р(·) возрастает примерно в четыре раза.
   Приведем некоторые модели приближенного описания изменения параметров ПС АД и зависимость его от параметров возмущенного движения [4]. В случае, когда исследуется крыло бесконечного размаха, движущееся с постоянной скоростью V, можно ограничиться рассмотрением профиля крыла в двумерном потоке.

   Рис. 1.10

   Пусть профиль (рис. 1.10) совершает вертикальные перемещения y(x,t). При этом скорость потока нормальная к профилю:


   В каждой точке профиля формируется местный угол атаки:


   Если y(x,t) = y(t) + (x0 – x)φ(t), т. е. произвольная точка, отстоящая от носка профиля на величину х0, перемещается на у(t) и поворачивается на угол φ(t) относительно х0, получим [21]:
   – для подъемной силы сечения крыла


   – для момента сечения крыла


   где b = b(z) – хорда крыла в сечении Z.
   В случае если поток воздуха сверхзвуковой (M > 1), а крыло совершает колебания с частотой ω, то приращение подъемной силы на единицу длины профиля Δp(x, t) имеет вид:


   Тогда для подъемной силы


   и момента M (z) получим:


   где Cαу – экспериментальное значение производной, равной ∂Cу / ∂α.

Крыло конечного размаха