Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

Северный Канье и Южный Канье (но не Западный) – избирательные округа в Ботсване.

Еще   [X]

 0 

Современные работы по постройке крыши и настилу кровли (Назарова Валентина)

В настоящем издании в доступной форме представлены различные сведения о материалах, инструментах и современных технологиях по постройке крыши и кровельных покрытий. Приведены пошаговые инструкции по настилу кровли, даны необходимые советы по выбору и грамотному применению строительных материалов.

Год издания: 2011

Цена: 45 руб.



С книгой «Современные работы по постройке крыши и настилу кровли» также читают:

Предпросмотр книги «Современные работы по постройке крыши и настилу кровли»

Современные работы по постройке крыши и настилу кровли

   В настоящем издании в доступной форме представлены различные сведения о материалах, инструментах и современных технологиях по постройке крыши и кровельных покрытий. Приведены пошаговые инструкции по настилу кровли, даны необходимые советы по выбору и грамотному применению строительных материалов.


Валентина Ивановна Назарова Современные работы по постройке крыши и настилу кровли

Глава I
Устройство крыши

   Невозможно представить себе нормальное жилище без крыши. И не зря выражение «есть крыша над головой» означает, что у человека есть дом. Но функциональная ценность крыши не уменьшает и не заслоняет ее декоративные достоинства, особенно для дачных домиков. Часто крыша составляет почти половину дома, а если взять домик типа «шалаш», то это – одна сплошная крыша.
   Крыша здания имеет несущую и ограждающую части. Несущая часть состоит из деревянных или железобетонных стропил, деревянных, стальных строительных ферм или железобетонных панелей. Несущая часть передает нагрузку от снега, ветра и собственного веса крыши на стены и отдельные опоры. Ограждающая часть крыши состоит из следующих элементов: кровли – верхней водонепроницаемой оболочки крыши, и основания под кровлю в виде обрешетки из деревянных брусков, дощатого настила или цементного слоя по железобетонной основе.
   Кровли в зависимости от материала устанавливают деревянные, из глиняной черепицы, металлочерепицы, кровельной листовой стали. Кровли из волнистых асбестоцементных листов (шифера), плоских асбестоцементных плиток, рулонных материалов – толи и рубероида в настоящее время применяются редко.
   Несущая часть крыши должна обладать необходимой прочностью и устойчивостью, ограждающая часть – легкостью, устойчивостью к химическим и атмосферным воздействиям, водонепроницаемостью, малой теплопроводностью.
   Крыши в домах устраивают бесчердачные и чердачные. Для проветривания и освещения чердака в крыше устраивают чердачные окна.
   При устройстве бесчердачной крыши элементы чердачного покрытия и крыши совмещают в одной конструкции – покрытии, предохраняющем здание от охлаждения в зимнее время и атмосферных осадков.
   Для обеспечения стока атмосферной воды поверхность из разных материалов должна иметь соответствующий уклон, который выражается отношением высоты подъема h к половине перекрываемого пролета L или в градусах угла наклона крыши к горизонту L. Например, при L=27 отношение H: L=1:2. При пологих крышах уклон иногда выражают в процентах, для этого отношения H: L умножают на 100.
   В зависимости от уклона крыши бывают плоские и скатные. Плоские крыши имеют малый уклон – не более 3 %. Скатные крыши представляют собой системы пересекающихся наклонных плоскостей – скатов. Пересечения скатов крыши образуют двухгранные углы, из которых обращенные кверху называются ребрами, а обращенные книзу – разжелобками или ендовами. Верхнее горизонтальное ребро пересечения скатов крыши называется коньком.
   Уклон скатных крыш принимают в зависимости от вида кровли, например, для глиняной черепицы уклон крыши составляет 1:1–1:2, для кровельной листовой стали 1:3,5 (L=16).
   Скатные крыши с уклоном до 15 % называют пологими, с уклоном более 15 % – крутыми.
   В строительстве применяют разнообразные формы крыши, которые выбирают с учетом общей конфигурации здания в плане, возможного направления отвода воды, а также индивидуальных архитектурных возможностей. Односкатные крыши в настоящее время применяются редко, их устраивают над зданиями сравнительно небольшой ширины и в случаях, когда отвод воды можно организовать только к одной из продольных стен.
   Двускатная, или щипцовая крыша состоит из двух скатов, направленных в противоположенные стороны. Образующиеся треугольники в верхней части торцовых стен называют щипцами или фронтонами.
   Четырехскатная крыша имеет скаты на четыре стороны. Скаты, направленные к торцовым стенам, называются вальмами, отсюда название крыш – вальмовые. Щипцовые стены в этом случае отсутствуют.
   Вариантом вальмовой крыши является полувальмовая или полущипцовая крыша. Боковые скаты срезают только часть щипца и имеют вследствие этого по линии уклона меньшую, чем основные скаты, длину. Полувальма, расположенная вверху, имеет форму треугольника.
   Выбор материала и типа конструкции крыши зависит от расположения в здании внутренних опор, величины перекрываемых пролетов, уклона кровли и требований, предъявляемых к крыше: огнестойкости, теплотехнических свойств и долговечности.
   Простейшим типом несущей конструкции скатных крыш являются наклонные деревянные стропила. Наклонные стропила двускатной крыши опирают нижними концами на подстропильные брусья – мауэрлаты, а верхними – на горизонтальный брус, называемый верхним коньковым прогоном. Верхний прогон поддерживается стойками, установленными на внутренние опоры. Расстояние между стойками, несущими коньковые прогоны, принимают от 3 до 5 м.
   Для увеличения продольной жесткости конструкции стропил и уменьшения сечения коньковых прогонов укрепляют парные продольные подкосы, расположенные у каждой стойки или через одну при небольших пролетах. Для уменьшения свободного пролета стропильных ног устанавливают поперечные подкосы, опираемые на лежень внизу и подпирающие стропильные ноги вверху. В случае смещения внутренней опоры от центральной оси здания не более, чем на 1 м, стойку, поддерживающую прогон, устанавливают наклонно.
   При имеющихся в здании двух капитальных продольных стен или двух рядов внутренних столбцов укладывают два верхних прогона. Стропильные ноги в этом случае по длине могут быть составными. Для увеличения жесткости конструкции необходимо устанавливать ригели.
   В четырехскатных вальмовых крышах в местах пересечения скатов необходимо располагать диагональные накосные стропильные ноги (рис. 1), в некоторые врубают укороченные стропильные ноги – нарожники.
   Рис. 1. Наклонные стропила в зданиях (в плане): а – с одной внутренней опорой; б – с двумя внутренними опорами; в – общий вид шпренгелей для опирания накосных стропильных ног: 1 – прогон; 2 – стропильная нога; 3 – подкос под прогон; 4 – нарожники; 5 – накосная (диаго нальная нога)

   Диагональные стропильные ноги имеют большую длину и несут значительную нагрузку. Поэтому их поддерживают в пролете промежуточной опорой в виде подкоса или поставленной в углу здания шпренгельной конструкцией. Нижним концом диагональную стропильную ногу опирают на подстропильные брусья в углу, в месте их сопряжения или на балку, уложенную наискось на подстропильные брусья на некотором расстоянии от угла. При наличии одного прогона верхний конец диагональной ноги опирается на его консоль, а при двух прогонах – на пробоины, прикрепленные гвоздями к концам стропильных ног. Консоли прогонов используют как промежуточные опоры на косых ногах. На рис. 3 показаны детали узлов деревянных брусчатых стропил. В местах сопряжения стропилы усиливают металлическими креплениями: гвоздями, болтами, скобами.
   Рис. 2. Конструктивные схемы деревянных наклонных стропил: а – общий вид; б – для двускатных крыш: 1 – чердачное перекрытие; 2 – кобылка; 3 – обрешетка; 4 – лежень; 5 – стропильная нога; 6 – верхний прогон; 7 – стойка; 8 – подкос; 9 – мауэрлат; 10 – верхний прогон; 11 – ригель; 12 – распорка

   Рис. 3. Детали узлов деревянных брусчатых наклонных стропил А—Е

   В зданиях, не имеющих внутренних опор, невозможно устраивать наклонные стропила. Поэтому в качестве несущих конструкций крыши применяют строительные фермы, к которым подвешивается чердачное перекрытие. Расположенные по верхнему контуру фермы, стержни образуют верхний пояс строительной фермы, по нижнему контуру – нижний пояс. Стойки – вертикальные стержни и раскосы – наклонные стержни, расположенные между верхним и нижним поясами, образуют решетку фермы. Стропильные фермы изготовляют деревянные, стальные и железобетонные. В продольном направлении фермы устанавливают на расстоянии 4–6 м друг от друга. Простейшим видом деревянной строительной фермы являются шпренгельные фермы. Шпренгельные фермы для пролетов от 10 до 12 м изображены на рис. 4. Фермы состоят из стропильных ног, затяжки, воспринимающей распор, вертикальной подвески – бабки, к которой подвешена затяжка, и подкосов.
   Рис. 4. Деревянные шпренгельные фермы: а – со стальными подвесками; б – с деревянными подвесками; в – детали узлов: 1 – бабка; 2 – гвозди; 3 – стропильная нога; 4 – затяжка; 5 – аварийный болт; 6 – болты; 7 – болтовые нагели

   Ввиду большой ширины здания при установке шпренгельных и строительных ферм чердачное перекрытие недопустимо перекрывать балками, опирающимися на стены. Конструкцию чердачного перекрытия подвешивают на стальных хомутах к затяжке стропил или к нижнему поясу фермы, образуя подвесные перекрытия.
   При наличии подвесного чердачного перекрытия подвески или бабки висячих стропил, работающие на растяжение, иногда выполняют из стальных тяжей. На рис. 5 изображены детали узлов подвесного чердачного деревянного перекрытия. К затяжке деревянных висячих стропил подвешены в перпендикулярном к ней направлении на хомутах из полосовой стали деревянные прогоны. Перпендикулярно к прогонам подвешены деревянные балки, между которыми уложено облегченное межбалочное заполнение. Для уменьшения нагрузки на висячие стропила или стропильную ферму следует выбирать конструкцию для подвесного перекрытия, имеющую небольшой собственный вес.
   Рис. 5. Детали узлов подвесного чердачного перекрытия: 1 – прогон; 2 – балка подвесного перекрытия; 3 – затяжка; 4 – болты; 5 – уголки 60×60; 6 – уголки для прогонов; 7 – балка; 8 – хомут для прогонов

   В стальных фермах подвесное чердачное перекрытие изготовляют несгораемым по стальным балкам. Между балками укладывают сборные железобетонные плиты, по ним – легкий утеплитель и армопенобетонные или армопеносиликатные плиты. При устройстве утепления подвесного чердачного перекрытия необходимо предусмотреть защиту стальных балок от охлаждения, поскольку вследствие конденсации водяных паров будет происходить ржавление нижней полки балок, и возможно образование нежелательных желтых полос. В целях повышения огнестойкости и долговечности несущие конструкции скатных крыш целесообразно выполнять из железобетона, а железобетонные несущие конструкции скатных крыш рекомендуется выполнять бесстропильными из крупноразмерных панелей заводского изготовления.
   Кабельная система против обледенения крыш заключается в том, что по периметру крыши протягивают электрический кабель, который работает при температурном режиме воздуха от 0 °C до -15 °С и при наличие воды или льда на крыше. Система снабжена температурным и влажностным датчиками, которые устанавливают по краю крыши с южной стороны. С помощью датчиков регулируют включение и отключение кабельной системы.
   Более дорогие системы управления позволяют не только включать и отключать нагрев, но и задавать время работы в зависимости от температуры: крыша прогревается тем дольше, чем сильнее мороз.
   Перед установкой системы следует обратить внимание на качество кабеля. Кабель должен иметь мощную внутреннюю оплетку и надежный слой изоляции из стойкого материала для обеспечения механической прочности кабеля и электробезопасности системы.

Строение крыши

   Рис. 6. Строение крыши: 1 – скаты; 2 – конек; 3 – наклонное ребро; 4 – разжелобок; 5 – карнизный свес; 6 – фронтонные свесы; 7 – желоб; 8 – водосточная труба; 9 – дымовая труба

   • скаты – (наклонные плоскости);
   • конек – самый высокорасположенный внешний угол крыши;
   • наклонные ребра – внешние наклонные углы, образующиеся в результате пересечения скатов вальмовых или многощипцовых крыш;
   • разжелобки или ендовы, которые также образуются на стыках скатов, но в отличие от ребер имеют внутренне-угловой характер;
   • карнизные свесы – горизонтальные свесы по бокам дома;
   • фронтонные свесы – наклонные свесы над фронтонной поверхностью;
   • система водостока, представленная горизонтальными желобами и вертикальными водосточными трубами;
   • дымовая труба.
   Карнизные свесы, как правило, образуются стропильными ногами. Существует несколько форм карнизных свесов: свес заподлицо со стеной; карнизный вынос; подшивной свес; кирпичный свес (карниз); свес со сборной железобетонной плитой.
   Водосточная система в малоэтажном здании бывает с наружным организованным и неорганизованным водоотводом. В районах с суровыми зимними морозами, когда существует угроза замерзания воды в наружных водосточных системах, может быть рекомендован внутренний водоотвод, когда вертикальные водосточные трубы располагаются внутри здания, вдали от наружных стен, а отвод стоков производится в сеть дворовой канализации.

Конструкции крыш

Чердачные скатные крыши

   Зимой в чердачное помещение через перекрытие верхнего этажа (чердачное перекрытие) из расположенных ниже помещений проникают тепло и влага. Чем теплее чердак и чем теплопроводнее материал кровли, тем больше образуется конденсата. Весьма важным и эффективным мероприятием против переувлажнения чердачного пространства является его проветривание через вентиляционные отверстия под карнизом (приток) и в коньке (вытяжка), а также через слуховые окна.

Бесчердачные крыши

   Невентилируемые крыши применяют в тех случаях, когда исключается накопление влаги в покрытии в период эксплуатации. Основными элементами совмещенной крыши являются настил, утеплитель, пароизоляция и кровля.
   Частично вентилируемые крыши имеют в материале верхней части панелей поры или каналы.
   Вентилируемые крыши имеют сплошные воздушные прослойки высотой 200–240 мм.

Глава II
Кровельные работы

   Кровля – важный элемент здания, от надежности ее службы зависит не только долговечность здания, нормальная его эксплуатация, сохранение отделки помещений и оборудования, но и создание в помещениях хороших, комфортных условий для человека. Нельзя при этом не учитывать, что конструкции кровли должны учитывать и противостоять природным воздействиям и процессам – атмосферным осадкам (дождь, град, снег и лед), выветриванию, воздействию высоких и низких температур, ультрафиолетовых лучей, озона, «кислотных дождей», механических воздействий при эксплуатации и ремонте, напряжениям, передаваемым конструкциями самого здания.
   Выход этой книги неслучаен. Несмотря на то, что за последние годы в печати появилось много литературы в помощь индивидуальному застройщику, кровельным работам в ней уделяется незначительное внимание и отводится очень мало места. Это десять-пятнадцать страниц, большая часть которых занята схемами и рисунками. С другой стороны, есть и немало профессиональных изданий, в которых изложена технология кровельных работ, но они предназначены для обучения профессионалов, работающих в строительных организациях и имеющих различное необходимое оборудование.
   В этой книге сделана попытка рассказать о кровельных работах и применяемых материалах, о технологических особенностях и инструментах в форме, доступной для большинства людей, имеющих умелые руки, голову и желание работать.

Основные термины

   покрытие – верхнее ограждение здания для защиты помещений от внешних климатических факторов и воздействий. При наличии пространства (проходного или полупроходного) над перекрытием верхнего этажа покрытие именуется чердачным;
   кровля – верхний элемент покрытия (кровельный ковер), предохраняющий здание от проникновения атмосферных осадков и механических воздействий;
   основание под кровлю – поверхность теплоизоляции, несущих плит или стяжек, по которой наклеивают слой гидроизоляционного ковра (рулонного или мастичного). В кровлях из листовых материалов – (опоры для закрепления листов) прогоны и обрешетка. Если кровля имеет теплоизоляционное основание, она называется «теплой»;
   основной водоизоляционный ковер (в составе рулонных и мастичных кровель) – слои из армированных мастик или рулонных материалов, выполняемые без усиления основного водоизоляционного ковра в ендовах, на карнизных участках, в местах примыкания к стенам, шахтам и другим конструктивным элементам;
   защитный слой – элемент кровли, предохраняющий основной водоизоляционный ковер от механических повреждений, непосредственного воздействия атмосферных осадков, солнечной радиации и распространения огня на поверхности кровли;
   По степени воздействия воды и атмосферных осадков принято выделять кровельные материалы, а также гидроизоляционные материалы.
   Кровельные материалы предназначены для защиты от атмосферных осадков (дождь, снег, град), т. е. от кратковременного (периодического) воздействия осадков.
   Гидроизоляционные материалы призваны защищать строительные конструкции от постоянного воздействия воды, чаще всего под давлением.
   Кровельные материалы подразделяются по виду исходного сырья на:
   • металлические (из стали, алюминия, меди и других металлов и их сплавов);
   • керамические, получаемые обжигом глиняного сырья (черепица);
   • цементно-волокнистые (асбестоцементные, стеклоцементные);
   • пластмассовые (стекловолокнистый пластик, органическое стекло);
   • цементно-песчаные (бетонные) черепицы;
   • битумные (на основе битума, полимеров и их смесей).
   По конфигурации кровельные материалы делятся на плоские, волнистые, пазогребневые и гребневые.
   По форме – на рулонные (основные и безосновные), листовые, штучные изделия (панели, плиты) и мастичные.
   Мастиками называются искусственные смеси органических вяжущих, в том числе битумов с тонкодисперсными минеральными или органическими наполнителями.
   Для устройства защитного гидроизоляционного и пароизоляционного покрытия, грунтовок основания под покрытие рулонными и штучными кровельными материалами, применяются и эмульсии.
   Эмульсии – это двухфазные дисперсные системы, в которых чаще всего дисперсной средой является вода, а дисперсной фазой – органические жидкости, в том числе битумы. Для уменьшения поверхностного натяжения на границе раздела двух фаз вводят эмульгаторы (мыла, концентраты, сульфито-спиртовый щелок и другие). Эмульсии готовятся в гомогенизаторах.
   Выбор того или иного кровельного материала зависит от многих факторов: типа здания, конструкции несущих элементов крыши, традиций и климатических особенностей региона строительства, желания и финансовых возможностей заказчика.
   Данные табл. 1 говорят, что покрытия из рубероида недолговечны и сгораемы. Керамическая кровля имеет очень большую массу. Покрытия из оцинкованной стали характеризует небольшая масса, но они требуют регулярной покраски.
Таблица 1. Сравнительные характеристики показателей некоторых кровельных материалов
   Кровли из листовой стали имеют гладкую поверхность, обеспечивающую хорошее стекание воды даже при небольших уклонах кровли, позволяют индустриализировать строительство предварительной механизированной заготовкой элементов покрытия, малую массу, позволяющую устраивать более легкие стропила и обрешетки. Гибкость кровельной стали позволяет выполнять крыши сложной формы. Кроме того такие кровли невоспламеняемы и их ремонт сводится к замене отдельных листов.
   Можно отметить, что за последние годы появились новые кровельные материалы, такие как относительно дешевая полимерпесчаная и сверхплотная прокатная цементно-песчаная черепица и дорогие – черепица алюминиевая и металлочерепица, а также мягкие битумные самонаклеивающиеся плиты типа «Роки» и «Кепал», кровельные плитки «Plano Natur», «Plano Tema» и «Plano Nova», кровельные листы «Ондулин», битумно-латексная эмульсионная кровельная и гидроизоляционная мастика БЛЭМ-20 и мастика системы «Гекопрен». В ряде торговых залов, в зимний садах и оранжереях, в фонарях верхнего света промышленных зданий все чаще применяются светопрозрачные покрытия из акрилового, бикарбонатного стекла, стеклопластика, кварцевого (закаленного) стекла.
   Анализ направления развития в производстве и применении кровельных материалов говорит об устойчивой динамике роста производства современных материалов типа цементно-песчаной черепицы, металлопластиковых кровельных листов «под черепицу». Изделия «мягкой кровли» типа изопласт, филиизол, рубимакс на основе стеклоткани, полиэстера и модифицированные битумы вытесняют традиционные рубероид, пергамин, толь. Особенность современного кровельного строительства в России – возврат к традиционно применявшимся ранее медным кровельным покрытиям.
   По сравнению с широко применяемыми сегодня кровельными материалами на нефтебитуме (рубероиды, пергамины), современные материалы на модифицированном битуме служат в несколько раз дольше (20–30 лет без ремонта).
   Изменилась и основа рулонных кровельных материалов (РКМ). На смену бумажному картону пришел стеклохолст – стеклоткань или полиэстер (в ряде случаев упроченный стеклотканью). Такие материалы имеют значительно большую массу, чем традиционные (3–6 кг/м2 против 1–2 кг/м2).
   Стоимость современных кровельных материалов, изготовленных с применением высококачественных компонентов, растет. Однако, увеличивается и срок службы кровли. Вместо нескольких слоев традиционных материалов кладется один (максимум два) слоя. В результате сокращаются трудозатраты, а увеличение значительных первоначальных затрат на покупку материалов наплавляемой мягкой кровли окупаются за счет длительной безремонтной эксплуатации.

Инструменты, применяемые в кровельных работах

   Для резания кровельной стали при изготовлении небольших деталей применяют обычные ручные ножницы для правой и левой резки (рис. 7), фигурные ножницы с заостренными губками (для вырезки кругов при изготовлении дефлекторов и флюгарок). Полукруглые режущие части ножниц усиливаются приваркой пластин из победита, что значительно увеличивает срок их службы.
   При небольших объемах кровельных работ применяют стуловые ножницы (рис. 7), позволяющие за счет удлинения ручки значительно снизить усилия при резке листов кровельной стали. Для ускорения резки кровельных листов стали могут применяться электровиброножницы или стационарные ножницы с ручным приводом (рис. 8).
   Рис. 7. Инструменты для кровельных работ по металлу: 1 – кронциркуль; 2 – нутромер; 3 – электровиброножницы; 4 – циркуль для разметки; 5 – ножницы для резки листов и асбестоцементных плит; 6 – шпатель; 7 – правые ножницы; 8 – левые ножницы; 9 – ножницы с изогнутыми ножами; 10 – стуловые ножницы

   Рис. 8. Стационарные ножницы с ручным приводом: 1 – подвижной нож; 2 – неподвижный нож; 3 – опора; 4 – ось; 5 – корпусная станина; 6 – передаточный рычаг; 7 – рукоятка

   Для кровельных работ используют различные молотки: большой и малый, фигурный, специальный, слесарный и деревянный. Молотки имеют деревянные ручки, закрытые со стороны рабочей части жестяным футляром длиной 10–12 см.
   Малый и большой молотки (рис. 9), имеющие в сечении форму квадрата, используют при формировании лежачих и стоячих фальцевых соединений: большой – в качестве передвижного упора, малый – в качестве подсекальника и бойка, а также для равнения стоячих гребней и забивки кляммер. Фигурный молоток применяют для выполнения сферических поверхностей на заготовках из кровельной стали, а также для правки водосточных труб и желобов. Специальный молоток с загнутым концом позволяет обрабатывать соединения кровельной стали в труднодоступных местах, при соединении флюгарок с основанием, при обработке внутренних кромок и др. Деревянный молоток (киянку) используют для подготовки и соединения рядового покрытия кровли лежачими и стоячими фальцами.
   Рис. 9. Инструменты для кровельных работ: 1 – молоток-подсекальник; 2 – молоток-ручник; 3 – слесарный молоток; 4 – киянка; 5 – молоток-правильник со сменным бойками; 6 – чертилка; 7 – рейсмус; 8 – кернеры; 9 – каток; 10 – молоток-кирочка; 11 – молоток-топорик; 12 – кельма овальная; 13 – кельма остроугольная

   Рис. 9. Инструменты для кровельных работ (продолжение): 1 – зубила; 2 – ножовка; 3 – кромкогибщик; 4 – щетки для на несения горячей мастики; 5 – гребнегиб для формирования фальцев

   При заготовке кровельных листов для рядового покрытия кровель используют для формирования фальцев верстаки или фальцегибочные станки (обычные или универсальные).
   При монтаже металлических покрытий крыш кровельщику приходится загибать края кровельных листов. Обычно эту работу выполняют при помощи слесарных плоскогубцев. Применение для этой цели специальных клещей позволяет повысить производительность труда и качество заготовок. Специальные кровельные клещи бывают полукруглые, кривые и прямые (рис. 10).
   Рис. 10. Кровельные клещи: а – полукруглые; б – кривые; в – прямые

   При наклейке рулонных кровельных материалов и небольших объемах работ, когда невозможно применить машины, используют ручной инструмент, приспособления и инвентарь: шпатель металлический, шило шорное, щетку для нанесения мастики, гребок с резиновой вставкой, молоток штукатурный, бачок емкостью 20 л для мастики, ведро транспортное емкостью 15 л, каток для прижатия рулонных полотнищ (рис. 11).
   Рис. 11. Ручной инструмент для кровельных и изоляционных работ: а – шпатель металлический; б – шило шорное; в – щетка для нанесения мастики; г – гребок с резиновой вставкой; д – молоток штукатурный; е – бачок для мастики емкостью 20 л; ж – ведро вместимостью 15 л; з – термос емкостью 25 л

   При больших объемах кровельных работ могут применяться комплекты машин и механизмов: автогудронаторы, котлы-термосы, передвижные установки для подачи горячего битума на крышу, удочки для нанесения мастики, прикатывающие катки и другие.

Классификация кровельных материалов

   Мир кровельных материалов многообразен и каждый год появляются новые материалы, по своим качествам превосходящие привычные нам традиционные. Именно поэтому, прежде чем перейти к классификации современных кровельных материалов, уместно вспомнить хотя бы основные типы кровель и из чего они выполнены.
   Деревянные кровли: из гонта, из драни и стружки, из теса.
   Мягкие кровли: рубероидные, из пергамина, изола, гидроизола, фольгоизола, металлоизола, из битумных мастик, из мастичных битумно-полимерных материалов – Поликор-2, Поликор-6, Антикор МПБ-1, Битурэл, Гемокров, БМВ-100, БМВ-200, из рулонных битумно-полимерных материалов – Монофлекс, Изопласт-К, Изопласт-П, Днепрофлекс, Днепромаст, Люберит-К, Люберит-П, Люберит-Г, Филизол обычный, Филизол комбинированный, Полимерная пленка (мембрана), Кровлен, Кромэл и другие.
   Металлические кровли: из листовой стали (черной и оцинкованной), из медных листов, из металлочерепицы, из стального и алюминиевого профнастила.
   Черепичные кровли: из глиняной плоской черепицы, из глиняной пазовой ленточной черепицы, из пазовой штампованной глиняной черепицы, из пазовой штампованной цементно-песчаной черепицы и др.
   Кровли из неметаллических материалов: из плоских асбестоцементных плиток; из асбестоцементных листов ВО, ВУ-К, УВ-6, УВ-7, 5, СВ-40; из цементно-волокнистых листов, из листов Ондулина, Вартти-2000 и из различных светопрозрачных кровельных листов.

Современные кровельные материалы

   Цементно-песчаная черепица:
   • пазовая рядовая;
   • пазовая коньковая.
   Керамическая черепица:
   • пазовая штампованная рядовая;
   • пазовая ленточная рядовая;
   • плоская ленточная рядовая;
   • волнистая штампованная рядовая;
   • коньковая.
   А – неглазурованная; Б – глазурованная.
   Полимерпесчаная черепица:
   • пазовая рядовая;
   • ленточная рядовая;
   • коньковая.
   Стеклянная черепица (для освещения чердачных помещений):
   • из силикатного стекла;
   • из органического стекла.
   Алюминиевая черепица.
   Резино-битумная черепица.
   Кровельные металлические листовые покрытия.
   Плоские листы из оцинкованной стали. Волнистые металлические листы «под черепицу» пазогребневые несущие.
   Волнистые алюминиевые листы.
   Плоские медные листы.
   Кровельные неметаллические листовые покрытия.
   Асбестоцементные:
   • волнистые;
   • плоские.
   Волнистые цементно-волокнистые (безасбестовые).
   Волнистые из органического стекла:
   • акриловые;
   • поликарбонатные.
   Волокнистые из стеклопластика.
   Плоские и гнутые из ячеистого органического стекла:
   • акриловые;
   • поликарбонатные.
   Деревянный гонт.
   Гидротеплоизоляционные системы.
   Панели-сэндвичи:
   • 2 листа и утеплитель;
   • 2 алюминиевых листа и утеплитель.
   Мягкие кровельные материалы и утеплитель. Материалы инвентарных кровель.
   Мягкие битумные покрытия.
   Рулонные (основные).
   На картонной (бумажной) основе:
   • пергамин;
   • рубероид;
   • рубемаст.
   На стеклобумажной основе:
   • стеклохолст;
   • стеклоткань.
   На нетканной основе (на битумном связующем):
   • полиэстер;
   • полиэстер и стеклонить.
   Наплавляемые на битумно-полимерном связующем:
   • битум и антарктический полипропилен (АПП);
   • битум и изотактический полипропилен (ИПП);
   • битум и стирол-бутадиенстирол (СБС).
   Фольгоизолы (металлоизолы):
   • на основе алюминиевой фольги;
   • на основе медной фольги.
   Безосновные.
   Штучные.
   Гонт (шилга) под черепицу из наполняемых материалов.

Свойства кровельных материалов

   Для обеспечения нормальных условий эксплуатации здания необходим оптимальный выбор вида кровли в зависимости от уклона крыши, должны быть учтены особенности района строительства и воздействия на кровлю внешних факторов – дождя, снега, ветра, температуры воздуха, солнечной радиации и др. Особое место занимают вопросы соблюдения технологии выполнения кровельных работ и качество применяемых материалов. Выполнение этих требований возможно только при знании как свойств, способов получения, правил хранения и транспортировки материалов, так и условий их работы в конструкциях и сооружениях.
   Свойства кровельных материалов можно разделить на следующие группы: физические, гидрофизические, теплотехнические, механические, химические, биологические и особые свойства.

Физические свойства

   Средняя плотность – отношение массы материала к его объему в естественном состоянии, т. е. с пустотами и порами. Величина средней плотности исчисляется в г/см3, кг/м3, т/м3. Средняя плотность не постоянна, т. к. она изменяется в зависимости от пористости материала. Искусственные материалы, а такими является большая часть кровельных материалов, могут быть получены с необходимой заданной средней плотностью.
   В табл. 2 приведены плотности и пористость различных материалов, применяемых при устройстве кровель.
Таблица 2. Плотность, средняя плотность и пористость кровельных материалов
   Относительная плотность выражает плотность материала по отношению к плотности воды (это величина безразмерная).
   Строительные материалы по своей структуре пористые. Исключение составляют металлы, мономинералы, стекло. Пористость материалов обычно колеблется в довольно широких пределах – от 0 до 98 %. Для кровельных материалов важное значение имеет не абсолютная величина пористости, а соотношение открытых и закрытых пор. Открытые поры сообщаются с окружающей средой и между собой и при обычных условиях могут заполняться водой. Открытые поры увеличивают проницаемость и водопоглащение материала и ухудшают его морозостойкость, что неприемлемо для кровельных материалов.
   Пористый материал обычно содержит как открытые, так и закрытые поры, увеличение закрытой пористости за счет открытой повышает его долговечность. Все свойства материала определяются его составом, строением и, главное, величиной и характером пористости.

Гидрофизические свойства

   Гигроскопичность – свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха. Этот процесс, называемый сорбцией, обратимый. Волокнистые материалы со значительной пористостью, например, теплоизоляционные и стеновые, обладают развитой внутренней поверхностью пор и поэтому высокой сорбционной способностью. У кровельных материалов, наоборот, сорбционная способность низкая из-за малой внутренней поверхности пор.
   Водопоглащение – способность материала поглощать и удерживать воду. Водопоглащение характеризует в основном открытую пористость, так как вода не проходит в закрытые поры. Все кровельные материалы имеют незначительную величину водопоглащения. Водопоглащение ухудшает основные свойства кровельных материалов: увеличивает относительную плотность, материал набухает, его прочность и морозостойкость снижаются.
   Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью. Водостойкость численно характеризуется коэффициентом размягчения Кразм, который показывает степень снижения прочности в результате насыщения материала водой.
   Водопроницаемость – способность материала пропускать воду под давлением. Степень водопроницаемости зависит от пористости материала, формы и размеров пор. Чем больше в материале замкнутых пор и пустот, тем меньше его водопроницаемость. Кровельные материалы должны иметь низкую водопроницаемость, они относятся к плотным материалам (их относительная плотность близка к единице). Стекло, сталь, полиэтилен, битум и др. практически водонепроницаемы.
   Водонепроницаемость рулонных кровельных материалов определяется по времени, в течение которого образцы не пропускают воду при постоянном гидростатическом движении.
   Влажность – это степень содержания влаги в материале. Влажность материала зависит от влажности окружающей среды, свойств и структуры самого материала. В кровельных материалах показатель влажности близок к нулю.
   Морозостойкость – способность материала в насыщенном водой состоянии выдерживать требуемое число циклов попеременного замораживания и оттаивания. В зависимости от числа циклов, которые выдержал материал, устанавливается его марка по морозостойкости.
   Благодаря высокой плотности и низкому водопоглощению кровельные материалы имеют высокую морозостойкость.

Теплотехнические свойства

   Теплопроводность – это способность материала передавать теплоту через свою толщу при наличии раз нос ти температур по обе стороны материала. Тепло про водность зависит от вида материала, пористости, ха рак тера пор, его влажности и плотности, а также от сред ней температуры, при которой происхо дит пе ре – дача теплоты. Значение теплопроводности характеризуется коэффициентом теплопроводности. С увеличением влажности материала коэффициент теплопроводности резко возрастает, т. к. снижаются показатели теплоизоляционных свойств материала (рис. 12).
   Рис. 12. Зависимость теплопроводности неорганических веществ от плотности: 1 – материалы, насыщенные водой; 2, 3 – воздушно-сухие материалы с разной влажностью; 4 – сухие материалы

   На заметку
   Так как кровельные материалы имеют высокую плотность и не применяются на границе разных температур, теплопроводимость у них значительная. При необходимости теплоизоляции в покрытиях крыш устраивают теплоизоляционные слои.
   Огнестойкость – это способность материала выдерживать без разрушений одновременное действие высоких температур и воды. Пределом огнестойкости конструкции называют время (в часах) от начала огневого испытания до появления одного из следующих признаков разрушения: сквозных трещин, обрушения, повышение температуры на необогреваемой поверхности.
   По огнестойкости строительные материалы, включая кровельные, делятся на три группы:
   • несгораемые,
   • трудносгораемые,
   • сгораемые.
   Несгораемые материалы под воздействием высоких температур или огня не тлеют и не обугливаются (например, черепица); трудносгораемые – с трудом воспламеняются, тлеют и обугливаются, но происходит это только при наличии огня (например, кровельная сталь); сгораемые материалы воспламеняются или тлеют и продолжают гореть или тлеть после удаления источника огня (например, дерево, рубероид, стеклопластик).
   Огнеупорность – способность материала противостоять длительному воздействию высоких температур без деформаций и не расплавляясь.
   По степени огнеупорности материалы подразделяются на:
   • огнеупорные (выдерживают действие температур более 1580 °C),
   • тугоплавкие (выдерживают температуру 1360-1580 °C),
   • легкоплавкие (выдерживают температуру до 1350 °C).
   Теплостойкость и температуроустойчивость – это способность материала сохранять форму, не стекать и не сползать с поверхности конструкции под определенным уклоном и при определенной температуре. Эта температура зависит от структуры материала, его физико-механических свойств, вида и количества заполнителя. Это свойство очень важно для органических вяжущих веществ (битумы, дегти, пластмассы), которые при температуре выше температуры теплостойкости теряют свои вязкие свойства и перестают выполнять роль вяжущего. Например, теплостойкость битумной изоляции толщиной 4 мм составляет 70–90 °C, а битумно-латексной эмульсии толщиной 6 мм – 70 °C.
   Температура размягчения характеризует только битумные и дегтевые вяжущие вещества. Это условный показатель, характеризующий изменение вязкости вяжущих веществ при повышении температуры. Так температура размягчения нефтяных строительных битумов 50–70 °C, нефтяных кровельных – 40–95 °C, дегтей высоких марок – 40–70 °C.
   Температура вспышки – свойство масел и нефтепродуктов. Это температура, при которой пары нефтепродуктов, нагретых в открытом тигле, образуют с воздухом смесь, вспыхивающую при поднесении к ним пламени. Температура вспышки нефтяных битумов, применяемых в качестве кровельных материалов, 240–300 °C в зависимости от битума. Минимальная температура самовоспламенения – 300 °C.
   Линейный коэффициент температурного расширения (ЛКТР) характеризует свойство материала изменять размеры при нагревании. ТКЛР равен относительному удлинению материала при нагревании на один градус.
   У каждого материала ЛКТР постоянен. Например, у дерева вдоль волокон – (3–5)×10-6, у полимеров – в 10–20 раз больше, у стали – (10–14)×10-6.
   Внимание!
   Во избежание растрескивания сооружения большой протяженности разрезают деформационными швами, назначаемыми с учетом термического расширения материалов. При устройстве мягких рулонных и мастичных кровельных покрытий, укладываемых по железобетонным плитам, учет ТКЛР имеет большое значение.

Механические свойства

   Прочность – это свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки.
   Материалы, находясь в сооружении, могут испытывать различные нагрузки. Характерными для кон струкций крыши являются сжатие, растяжение, изгиб, пластичность и упругость. Такие материалы, как: кровельная сталь, древесина, асбестоцемент – хорошо работают на сжатие, изгиб и растяжение, поэтому их используют в конструкциях, испытывающих эти нагрузки, а бетоны – хорошо работают на сжатие и в 5-10 раз хуже – на растяжение, изгиб, удар, поэтому их используют в конструкциях, работающих на сжатие.
   Прочность строительных материалов характеризуется пределом прочности, измеряется в паскалях (Па) и представляется напряжением, соответствующим нагрузке, вызывающей разрушение образца материала.
   Предел прочности при сжатии различных материалов колеблется в пределах от 0,5 до 1000 Мпа и более. Прочность зависит также от структуры, плотности, пористости, влажности и направления приложения нагрузки.
   Упругость – это свойство материала восстанавливать свою форму и размеры после снятия нагрузки. Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают минимальной величины, установленной техническими условиями на данный материал.
   Хрупкими называют материалы, разрушающиеся при статических испытаниях при очень малых остаточных деформациях. К хрупким материалам относятся чугун, природный камень, бетон, керамические материалы, асбестоцемент.
   Пластичными называют материалы, которые при статических испытаниях до момента разрушения получают значительные остаточные деформации. Пластичность является весьма важным и положительным качеством материала.
   К пластичным материалам относятся малоуглеродистая сталь, медь, мастики, пасты, битумы и дегти при положительных температурах. Большинство пластичных материалов при понижении температуры приобретают хрупкие свойства, т. е. у них происходит переход от пластического разрушения к хрупкому. Так ведут себя битумные материалы, металлы и др.
   Трещиностойкость – это снижение упругопластических деформаций при отрицательных температурах. Исчезает однородность материала на его поверхности, что очень важно для материалов, используемых при устройстве оболочки крыши. Трещиностойкость характеризуется коэффициентом трещиностойкости.

Химические свойства

   Химическая стойкость – это способность материалов противостоять разрушающему действию кислот, щелочей, растворенных в воде солей и газов, органических растворителей (ацетона, бензина, масел и др.). Химическая стойкость характеризуется потерей массы материала при действии на него агрессивной среды в течение определенного времени. Например, битум БНК 45/180 при выдерживании в 5 %-й соляной кислоте за 150 суток теряет 1 % массы, в 5 %-й серной кислоте – 0,8 %.
   Щелочестойкими должны быть материалы, стойкие к воздействию щелочей, например пигмента, применяемого для окрашивания металлической кровли.
   Сероводород и углекислый газ в больших количествах содержится в воздухе, особенно в районах промышленных предприятий. Поэтому для окрашивания металлических кровель нельзя применять краски, в состав которых входят свинец и медь, так как последние, вступая в реакцию с сероводородом, чернеют.
   Атмосферостойкость – способность материала длительное время сохранять свои первоначальные свойства и структуру после совместного воздействия погодных факторов: дождя, света, кислорода воздуха, солнечной радиации, колебаний температуры.
   Оценивается атмосферостойкость временными показателями: час, сутки, месяц, год. Например, органические вяжущие, битумы и дегти, подвергаясь атмосферным воздействиям, ускоряют свое старение, т. е. становятся хрупкими и теряют водоотталкивающие свойства за счет нарушения целостности гидроизоляционного ковра. Атмосферостойкость находится в прямой зависимости от свойств материала и его состава.

Биологические свойства

   Биологические свойства – это свойства материалов и изделий сопротивляться разрушающему действию микроорганизмов. Так в Средней Азии материалы, содержащие битум, разрушаются под действием микроорганизмов, которые для своего развития поглощают органические составляющие битума. Биостойкость битумных и деревянных материалов повышается специальными добавками – антисептиками. Кроме этого органические материалы необходимо оберегать от увлажнения.
   На заметку
   Следует отметить, что биостойкость материалов на основе дегтевых вяжущих выше биостойкости битумных, т. к. дегти содержат токсичную карболовую кислоту.

Особые свойства

   Битумы обладают способностью растворяться в бензине. Это положительное свойство растворимости битума используется при приготовлении холодных битумных мастик, наносимых на изолируемые поверхности тонким слоем.
   Паропроницаемость – свойство материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала. Водяные пары стремятся попасть в область меньшего давления, т. е. на сторону слоя материала с меньшей температурой. Этим объясняется увлажнение изоляции, применяемой для поверхности с отрицательными температурами. Влага, проникая в слой изоляции с теплой стороны, увлажняет ее, а при отрицательной температуре – замерзает, что вызывает ухудшение свойств изоляции и ее разрушение. Кровельные гидроизоляционные мягкие материалы хорошо сопротивляются проникновению в них влаги, т. е. они паропроницаемы.
   Паропроницамость характеризуется коэффициентом паропроницаемости, размерность которого – кг/(м×ч×Па).
   Газопроницаемость – свойство материала, характеризуемое количеством газа, проходящего через образец определенного размера при заданном давлении.
   Строительные материалы с большой пористостью обладают газопроницаемостью. Степень газопроницаемости зависит еще от размера и характера пор.
   Усадка – это уменьшение линейных размеров и объема под воздействием изменения температуры, влажности, солнечной радиации или в результате процессов, происходящих в материале, таких, как старение, вулканизация и полимеризация у полимерных материалов. У рулонных кровельных материалов (бризол, изол, различные пленки) удлинение может быть относительным и остаточным. Усадку выражают в процентах от первоначального размера изделия.
   Набухание – свойство, противоположное усадке, вызываемое увлажнением материала, и оно намного ниже усадки.
   У кровельных материалов набухание незначительно, т. к. они приближаются к абсолютно плотным материалам с водопоглощением близким к нулю. Материал основания рулонных кровельных материалов (картон) подвержен явлениям набухания.
   Адгезия – сопротивление отрыву или сдвигу материала, нанесенного на изолируемую поверхность. Кровельные рулонные и мастичные материалы должны обладать высокой адгезийной способностью. Адгезию выражают величиной силы, приложенной к материалу с целью его отрыва или сдвига от изолируемой поверхности. Например, адгезия к бетону холодной асфальтовой мастики ИИ-20 при 20 °C составляет 0,23 МПа, а при предварительной огрунтовке пастой – 0,43 МПа. Вывод – состояние гидроизолируемой поверхности существенно влияет на величину адгезии.

Материалы для мягкой кровли

   Основные материалы получают путем обработки основы – бумажного картона, стекловолокна, металла, асбеста, полимерно-битумных материалов и бумаги битумами и смесями на его основе.
   Безосновные – в виде полотнищ заданной толщины получают путем прокатки на каландрах смесей, состоящих из связующего (битума и композиций на его основе), наполнителей и добавок. К основным относятся рубероиды, рубероиды направляемые, пергамины, гидроизолы, стеклорубероиды, материалы на основе синтетических тканей, фольгоизолы и фольгорубероиды, армобитумы, гудрокамовые материалы.
   Покровным называют кровельный материал покрытий с поверхности посыпкой (песком, высевкой дробленых горных пород, слюдой и др.)
   Беспокровные – а это пергамин, гидроизол и др. имеют только посыпку тальком и называются подстилающими или пароизоляционными. Чтобы предохранить полотнища при хранении от склеивания, они прокладываются полиэтиленовой пленкой.
   Внимание!
   Современные кровельные материалы на основе битумов носят название наплавляемых, при устройстве кровельного ковра они склеиваются без использования холодных или горячих мастик, а путем прогрева факелом горелки с последующим уплотнением к склеиваемой поверхности. Такая технология значительно экономит время, не требует работы с битумом и повышает технику безопасности при выполнении работ.
   Следует отметить и то, что кровельные материалы на основе дегтя (толь покровный, толь-кожа) ввиду концерогенности дегтя и невысокой долговечности материала практически уже сняты с производства и не могут быть рекомендованы для применения.
   Кровельные рулонные материалы могут укладываться на различные основания: бетон, асфальтобетон, дерево, металл, плиты утеплителя, старое рулонное покрытие, плоский шифер и др. Возможно также их механическое крепление внахлест (не менее 10 см) при помощи пластмассовых шайб-дюбелей.
   На рынке кровельных рулонных материалов широко представлены как отечественные, так и зарубежные заводы-производители. Так, в северо-западном регионе основными поставщиками являются: Завод кровельных и гидроизоляционных материалов «Изофлекс», Кирши – Ленинградской области; «ТехноНИКОЛЬ-Север» – Выборг Ленинградской области; в центральном регионе: Рязанский картонно-рубероидный завод; завод «Кровля», Учалы – Башкирия; завод «Фили-Кровля» – г. Москва и др.
   Большое количество высококачественных товаров поступает из ближнего и дальнего зарубежья: из Белоруссии (г. Осиновичи), фирмы «Келдерс» (Голландия); «Петрофлекс» (Италия); «Икопал», «Катепал», «Лемминкяйнен» (Финляндия); «Славония» (Австрия); а также фирмы «Изофлам», «Полифлам», «Дербигум», «Резидек» и др.
   Большинство этих фирм имеют свои представительства и широкую сеть дилеров и дистрибьюторов в России. Некоторые из них кроме продажи материалов выполняют их монтаж, гарантийное обслуживание и выдают страховые сертификаты на материалы и готовую кровлю на срок до 10 лет.

Рулонные материалы

Основные кровельные материалы

   Строительный картон выпускается следующих видов: прокладочный, водонепроницаемый, строительно-кровельный и облицовочный.
   Кровельный картон – это пористый волокнистый материал, состоящий из волокон вторичной переработки текстильного, синтетического и древесного сырья. Картон маркируется по величине массы в граммах, приходящейся на изготовление 1 м2 картона (А-500, А-420, А-350, А-300, Б-500, Б-420, Б-350, Б-300). Каждой марке соответствует своя разрывная сила: 226, 216, 186, 176, 226, 196, 186 Н. При устройстве мягкой кровли кровельный рулонный материал укладывается в 2 или 3 слоя, при этом нижний слой – подкладочный (беспокровный) материал, а верхний – из покровных материалов, с покровным слоем из тугоплавкого битума и присыпки.
   Если присыпка применяется крупнозернистая, в марку вводят индекс К; мелкозернистая – М; пылевидная – П. Допускается также выпуск материала с чешуйчатой посыпкой, тогда вводится индекс Ч.
   Пергамин – выпускается в соответствии с ГОСТ 2697-75. Это кровельный картон, пропитанный мягкими нефтяными битумами с температурой размягчения не ниже 40 °C. Он применяется в кровельных и гидроизоляционных покрытиях в качестве подкладочного материала для нижних слоев многослойных кровельных ковров при укладке на горячей мастике и под битумные фасонные листы или под асбестоцементные листы, а так же как основной рулонный материал в многослойных покрытиях при условии защиты верхнего слоя битумной мастикой в втопленным с него гравием для защиты поверхности.
   Выпускают пергамин в рулонах площадью 1020 м2, шириной 1000, 1025 и 1050 мм и массой 1 м2 для марок П-300 – 300 гр., П-350 – 350 гр.
   Требование
   Требования к пергамину – он должен быть гибким, иметь водопоглащение не превышающее 20 % по массе, его поверхность не должна иметь бугров, впадин, трещин, дыр, складок, разрывов, свободно скатываться в рулоны и не слипаться при температуре 5 °C.
   Рубероид выпускается в соответствии с ГОСТ 10923-82. Это кровельный картон, пропитанный битумом и покрытый с обеих сторон тугоплавкими битумами с наполнителем и посыпкой.
   Крупнозернистая цветная посыпка повышает атмосферостойкость рубероида и придает ему привлекательный вид. На нижнюю поверхность рубероида, образующего верхний слой кровельного ковра, и на обе стороны подкладочного рубероида наносится мелкозернистая или пылевидная посыпка, предотвращающая слипание материалов в рулонах. Рубероид подвержен гниению (это его большой недостаток), поэтому освоено произодство антисептированного рубероида.
   В зависимости от назначения – кровельный или подкладочный – в обозначение марки вносятся индексы соответственно К и П. Вид посыпки – крупный, чешуйчатый или пылевидный в марке обозначаются индексом соответственно К, Ч и П. Масса 1 м2 основы картона выражена в марке рубероида цифрами (табл. 3).
Таблица 3. Рубероид для устройства кровли

   Кровельный рубероид РЦ-420 с цветной минеральной посыпкой значительно эффективней РКК-420, т. к. его посыпка не только улучшает внешний вид, но и в несколько раз уменьшает поглощение покрытием солнечных лучей, ускоряющих старение рубероида. Так красная присыпка отражает до 15 % лучей, а зеленая – до 20 %, а серебристая – до 40 %. С изнаночной стороны кровельный рубероид посыпают мелкозернистой посыпкой для предотвращения слипания его в рулоне в жаркое время года.
   Рубероид с эластичным покровным слоем имеет прочность на разрыв полоски рубероида шириной 50 мм не менее 320 Н; водопроницаемость образца диаметром 100 мм (площадь 78,2 см2) при гидростатическом давлении до 0,07 МПа; водопоглощение при замачивании в воде в течение 24 часов – не более 25 г/м2, температура размягчения пропиточной массы не ниже 40 °C и покровной массы 80–90 °C. С изнаночной стороны он имеет мелкозернистую посыпку для предотвращения слипания его в рулоне в жаркое время года.
   Для регионов с холодным климатом применяют рубероид с эластичным слоем битума, модифицированного полимерами, что снижает температуру хрупкости покровного битума до -50 °C. Долговечность такого рубероида увеличивается в 1,5–2 раза.
   К рубероиду, как кровельному материалу предъявляются следующие основные требования:
   • рубероид должен быть теплостойким и водонепроницаемым. В зависимости от марок рубероид имеет следующие качественные показатели:
   • отношение массы пропиточного битума к массе абсолютно сухого картона не менее (1,25-1,4):1;
   • масса покровного состава 500-1000 г/м2;
   • средняя величина разрывной нагрузки при растяжении рубероида в продольном и поперечном направлениях не менее 216–333 Н;
   • отсутствие трещин и отслаивания посыпки при изгибании по полуокружности стержня диаметром 20–30 мм при 18–25 °C;
   • рубероид с крупнозернистой посыпкой должен иметь с одного края поверхности вдоль полотна чистую непосыпанную кромку шириной не менее 70 и не более 100 мм.
   Рубероид наплавляемый отличается от обычного тем, что в заводских условиях на нижнюю поверхность рулона наносится мастика, которая в присутствии растворителей обладает приклеивающими свойствами. Растворители (уайт-спирт или керосин) наносятся на основание по ровной, очищенной, сухой стяжке. Цементно-песчаная стяжка грунтуется раствором битума БН 90/10 в керосине или уайт-спирите в соотношении 1:2 по массе из расчета 800 г/м2.
   Внимание!
   Главное преимущество наплавляемого рубероида состоит в том, что при устройстве кровли наклейка осуществляется без применения кровельной мастики. Для нижних слоев кровельного ковра используют марки РМ-350-1,0; РМ-420-1,0; РМ-500-2,0; для верхних слоев – марки РК-420-1,0 и РК-500-2,0. Выпускают наплавляемый рубероид в рулонах общей площадью 7,5-10,0 м2 с обычной шириной полотна.
   Нельзя не отметить, что рубероид и пергамин вследствие высокой водопоглощающей способности картона набухают, а это способствует развитию гнилостных процессов. Поэтому для ответственных гидроизоляционных работ более пригодны битумные материалы, изготовленные на неорганической (асбестовой, металлической или стекловолокнистой) основе.
   Гидроизол – беспокровный кровельный и гидроизоляционный материал (рулонный), основанием которого служит асбестовая бумага. Лучшей асбестовой бумагой для гидроизола является асбестоцеллюлозная, имеющая в своем составе до 20 % целлюлозы. Гидроизол выпускается двух марок: ГИ-Г – для гидроизоляции подземных сооружений и ГИ-К – для кровельных работ. Последний выпускают массой 1–1,5 кг/м2, шириной полотна 950±5 мм, толщиной 1,5–2 мм и площадью в рулоне 20±0,4 м2. При температуре до -5 °C рулон легко раскатывается без появления трещин.
   Стеклорубероид – это рулонный кровельный и гидроизоляционный материал на стекловолокнистой основе. Получают его путем нанесения на стекловолокнистый холст марки ВВ-К битумного вяжущего с обеих сторон.
   В зависимости от вида посыпки на лицевой поверхности стеклорубероид изготавливается трех марок: С-РК – кровельный с крупнозернистой посыпкой на лицевой поверхности и пылевидной или чешуйчатой на нижней; С-РЧ – кровельный с чешуйчатой посыпкой на лицевой поверхности и мелкой или пылевидной на нижней; С-РМ – гид ро изо ля ци онный, имеющий с двух сторон мелкую или пылевидную посыпку. Рубероид С-РК и С-РЧ применяется для устройства верхнего слоя кровельного ковра, а С-РМ – для оклеечной гидроизоляции нижних слоев и для кровельного ковра с защитным покровным слоем.
   Стеклорубероид водонепроницаем, выдерживает в течение 10 минут гидростатическое давление в 0,08 МПа. Он гибок, при изгибании полоски стеклорубероида на стержне диаметром 40 мм при 0 °C на его поверхности не появляется трещин.
   Фольгоизол – рулонный основной материал, состоящий из тонкой рифленой или гладкой фольги, покрытой с нижней стороны защитным битумно-резиновым антисептированным составом с мелким наполнителем или битумно-резинополимерным антисептированным с наполнителями. Этот материал делают из холоднотянутой алюминиевой фольги толщиной 0,08-0,3 мм и шириной 1000±5 мм, на которую наносят в горячем состоянии битумно-резиновый слой толщиной 0,84,0 мм. Наружная поверхность фольгоизола может быть гладкой, рифленой, окрашенной в различные цвета атмосферостойкими красками и лаками для увеличения коррозийной стойкости.
   Фольгоизол имеет высокие физико-механические показатели, т. к. резина, входящая в состав гидроизоляционного слоя, медленнее стареет, пластична и влагостойка. Этот прочный водонепроницаемый материал долговечен и выпускается двух типов – кровельная фольга (ФК) и гидроизоляционная фольга (ФГ). В силу высокой отражательной способности фольги температура нагрева солнечными лучами кровли из этого материала на 20° ниже, чем температура нагрева аналогичных кровель черного цвета. Наклеивают фольгоизол на поверхность с помощью битумной мастики.
   Совет
   Во избежание слипания полотен при скатывании в рулон кровельного фольгоизола прокладывают полиэтиленовую пленку, а гидроизоляционного фольгоизола – целлофан или оберточную бумагу.
   Кровли и гидроизоляционные покрытия с применением полимерных материалов имеют высокую степень индустриализации работ, надежны в эксплуатации и в ряде случаев имеют более низкую стоимость по сравнению со стоимостью традиционных материалов. Они не требуют почти никакого ухода при эксплуатации, достаточно долговечны и прочны.
   Фольгорубероид является разновидностью рубероида, но вместо крупнозернистой посыпки применяется рифленая алюминиевая фольга. Высота гофра 0,4–1,0 мм, шаг 7-10 мм. Такое решение верхнего слоя кровельного покрытия способствует лучшему отражению солнечных лучей.
   Фольгорубероид бывает двух марок – АР-420 и РА-420. АР-420 имеет повышенную гибкость, остается гибким при отрицательных температурах; РА-420 гибкость сохраняет только при положительных температурах. Выпускается он в рулонах общей площадью 10±0,5 м2, шириной рулона 1026±5 мм. Применяется для устройства верхнего слоя кровельного покрытия в южных районах страны.
   Фольгобитэп – рифленый основной кровельный материал, в котором основанием служит рифленая фольга, покрытая с одной или двух сторон слоем битумно-полимерного вяжущего, смешанного с минеральными наполнителями и антисептиками.
   Из-за дефицита основания для изготовления рулонных кровельных материалов могут быть применены стеклоткани, обладающие большой гибкостью, гнилостойкостью и удобством укладки. К таким материалам относится гидростеклоизол кровельный и подкладочный. Стеклоткань в нем с обеих сторон покрывается слоем битумного вяжущего.
   Гидростеклоизол кровельный предназначен для устройства плоских кровель общественных и промышленных зданий. Выпускается в рулонах шириной 850-1150 мм и длиной 10±0,25 м.
   Гидростеклоизол подкладочный может быть использован для устройства нижнего слоя при устройстве кровель. Полотна подкладочного гидростеклоизола приклеиваются к основанию клеящими мастиками или оплавлением его поверхности, т. е. нагревом до капельно-жидкого состояния. Выпускается в рулонах шириной полотна 850-1000 мм, длиной 10±0,25 м. Для предотвращения склеивания гидростеклоизола в рулоне поверхность полотна покрывают каолиновой эмульсией.
   Резиново-каучуковые композиции вяжущего состава гидроизоляционных материалов повышают их сопротивление действию воды и замедляют процесс старения. Материалом, предназначенным для устройства кровли и подкладочного гидроизоляционного слоя, явился армобитэн, где стеклоткань, стеклохолст или биостойкая штапельная стеклосетка пропитываются битумно-каучуковым вяжущим. Выпускают армобитэн с крупнозернистой и мелкозернистой посыпкой. Первый применяется для устройства верхнего слоя кровельного покрытия, второй – для устройства нижнего слоя или гидроизоляции. Рулоны армобитэна имеют ширину 1000±20 мм и общую площадь 5-10 м2. Материал имеет высокую теплостойкость – не ниже 75 °C, очень гибкий, морозостойкий, с незначительным водопоглощением.
   Приклеивается армобитэн путем сплавления покровной массы с нижней стороны полотна горячим воздухом.
   Гудрокамовые материалы изготовляют пропиткой и покрытием с обеих сторон кровельного картона шириной 650-1060 мм и площадью 10±0,5 м2 гудрокамом – продуктом совместного окисления каменноугольных масел и нефтяного гудрона. Применяют их для многослойных плоских и совмещенных кровель, оклеечной пароизоляции на холодных и горячих гудрокамовых и битумных мастиках.

Безосновные кровельные материалы

   Изол – безосновный рулонный резинобитумный материал, в основу которого положено вяжущее, получаемое путем девулканизации утильной резины в битумной среде с последующей классификацией материала и введением волокнистых наполнителей в виде асбестовых волокон и других добавок.
   Изол служит в два раза дольше рубероида, эластичен, гнилостоек, хорошо выдерживает деформации, водонепроницаем, пластичен и биостоек. Эти свойства изол сохраняет в диапазоне температур от -30 °C до +100 °C. Используется для гидроизоляции и покрытия кровель и приклеивается горячей изольной мастикой или горячей битумной мастикой.
   Выпускают изол в рулонах площадью 10 и 15 м2 и шириной 800-1000 мм при толщине 2 мм. Масса 1 м2 изола 1,0–1,5 кг. Изготавливают изол двух марок И-БД – изол без полимерных добавок; И-ПД – изол с полимерными добавками.
   Бризол – это рулонный материал, обладающий повышенной гнило– и водостойкостью, высокой атмосферостойкостью, водонепроницаемостью и эластичностью.
   Изготавливают бризол из смеси нефтебитумов различной вязкости, измельченной резины от изношенных автомобильных шин, наполнителя и пластификатора. Примерный состав бризола в %: битум – до 60 %, резина – до 30 %, пластификатор – от 2 до 5 %, асбест – до 12 %.
   Бризол стоек к серной кислоте при концентрации до 40 %, к соляной кислоте при концентрации 20 % и температуре 60 °C. Выпускают его в рулонах, внутреннюю поверхность полотна припудривают тонкоизмельченным минеральным порошком во избежание слипания полотен при наматывании в рулон. Приклеивают бризол к изолируемой поверхности битумно-резиновой мастикой.
   ГМП – гидроизоляционный материал на основе полиизобутилена – высококачественный и долговечный рулонный материал. Выпускается он трех видов: марки ГМП-8, ГМП-10 и ГМП-12. ГМП предназначен для оклеечной гидроизоляции и многослойных покрытий плоских кровель.
   Пленочные кровельные рулонные материалы – это: пленка полиэтиленопековая гидроизоляционная, пленка полиэтиленовая, полиамидная, пленка полиамидная стабилизированная и др. Их преимущество в малой толщине, массе и высокой степени водонепроницаемости.
   Полиэтиленопековая гидроизоляционная пленка – это кровельный и гидроизоляционный рулонный материал. Отличается хорошими гидроизоляционными и прочностными показателями, но теряет эти качества при прямом воздействии солнечных лучей, атмосферного влияния, под воздействием микроорганизмов и корней луговых трав.
   Выпускается в рулонах общей площадью 10±0,5 м2, шириной 1500–2000 мм и толщиной 0,1–1,0 мм. Может применяться при устройстве защищенных плоских и малоскатных кровель.
   Пленка полиэтиленовая также применяется при устройстве кровель как морозостойкий и водонепроницаемый материал. Выпускается двух марок: А и Б толщиной 0,03-0,08 мм, 0,081-0,12 мм, 0,121-0,15 мм, 0,151-0,20 мм и длиной не менее 25 метров.
   Полиамидная пленка ПК-4. Выпускается трех марок: А, Б и В, отличающихся размерами и свойствами. Применяется в качестве гидроизоляционного слоя.
   Пленка полиамидная стабилизированная – рулонный прозрачный материал, применяемый в качестве светопрозрачной кровли для сельскохозяйственных помещений. Выпускается в рулонах шириной 12001300 мм, длиной не менее 25 метров и толщиной 0,05-0,09 мм.

Кровельные мастики, эмульсии, пасты

   Мастики представляют собой искусственные смеси органических вяжущих с минеральными наполнителями и добавками, улучшающими качества мастик. В зависимости от вида вяжущего могут быть: битумные, резинобитумные, дегтевые и битумно-полимерные мастики. В качестве наполнителей используются асбест, асбестовая пыль, минеральная вата (коротковолокнистая), известковые пылевидные порошки, порошки талька, трепела, кирпича, кварца, доломита, золы от пылеугольного сжигания минерального топлива или различные комбинации этих наполнителей. Наполнители повышают теплостойкость и твердость мастик, уменьшают их хрупкость при низких температурах, сокращают расход вяжущего вещества. Волокнистые наполнители, армируя материал, повышают его сопротивление изгибу.
   Мастики могут быть горячие, применяемые с подогревом до 160 °C для битумных мастик, и холодные, в состав которых входит растворитель. Холодные мастики при температуре воздуха до +5 °C используются без подогрева, при более низких температурах – с подогревом до 60–70 °C.
   По своему назначению мастики бывают приклеивающие (для приклеивания рулонных материалов и устройства защитного слоя кровли), кровельно-изоляционные (для устройства мастичных кровель), гидроизоляционно-асфальтовые (для устройства пароизоляции) и антикоррозионные (для устройства защитного слоя кровли из фольгоизола).
   По способу отверждения мастики бывают отверждаемые и неотверждаемые. По виду разбавителя мастики делятся на: содержащие воду, с органическими растворителями и с жидкими органическими веществами.
   На воздухе мастики затвердевают в течение часа, приобретая при этом гладкую эластичную поверхность, стойкую к атмосферным воздействиям. Они водостойки и имеют высокую клеящую способность.
   Выполняя кровлю из битумных материалов, необходимо помнить об их особенностях во время эксплуатации. Битумные кровли очень чутко реагируют на различные атмосферные воздействия и на перепады температуры. Сильный ветер часто срывает отдельные плохо приклеенные полотнища, особенно с карнизов. Ветер и солнце действуют иссушающе на верхний слой кровельного ковра, а сухая кровля начинает реагировать даже на незначительные изменения атмосферных условий: она сильно увеличивается в объеме при поглощении влаги и резко уменьшается при ее потере. Эти «колебания» буквально коробят верхний слой.
   Солнце отрицательно влияет и на качество клеющих мастик – оно убивает летучие вещества. Под воздействием солнечной радиации или низких температур мастика твердеет, теряет свою эластичность. В результате снижается прочность и самого рулонного кровельного материала, в котором образуются мелкие трещины. Осенью в трещины вместе с влагой попадают различные бактерии, разрушающие волокна кровельных полотнищ.
   Град пробивает битумную кровлю, образуя отверстия с рваными краями. Частые дожди при переменной температуре воздуха также являются причиной образования небольших трещин, через которые вода просачивается под верхний слой кровельного ковра и образуют так называемые «водяные мешки».
   Высокая летняя температура сильно нагревает битумную кровлю, ее температура поднимается до 50 °C, т. е. выше температуры окружающего воздуха. При этом часть влаги в виде капель и паров, попавшая ранее в поры и трещины, начинает расширяться, образуя в наружных слоях кровли вздутия, а иногда и разрывы. Кроме того, сильное нагревание кровли приводит и к сильному нагреванию мастики, в результате чего с одной стороны расплавленная мастика может заполнить собой появившиеся отверстия и трещины, с другой – с крутых скатов могут сползти полотнища кровельного ковра.
   Требование
   Мастики должны быть однородными, без включений частиц наполнителя, не пропитанных вяжущими веществами; удобонаносимыми; при их изготовлении и эксплуатации в окружающую среду не должны попадать вредные выделения в количествах выше допустимых; с теплостойкостью не ниже 70 °C; водонепроницаемыми; биостойкими; прочно склеивающими слои рулонных материалов; долговечными.

Битумные мастики

   Нефтяные битумы имеют цвет черный или черно-бурый, при нагревании они изменяют вязкость. В зависимости от вязкости они делятся на: твердые, полутвердые и жидкие. Твердые и полутвердые битумы применяют для изготовления кровельных и гидроизоляционных рулонных материалов, битумных мастик и лаков, жидкие – в качестве пропиточного материала основы рулонных кровельных материалов.
   Марка битума устанавливается по основным его свойствам: вязкости, растяжимости, температуре размягчения и температуре вспышки (табл. 4).
Таблица 4. Физико-механические свойства битумов

Таблица 5. Физико-механические свойства кровельных битумных горячих мастик
   Вязкость характеризуется глубиной проникания иглы, мм. Чем больше глубина, тем меньше вязкость.
   Растяжимость битума характеризуется длиной вытянутого образца в момент его разрыва, см.
   Температура размягчения характеризует пригодность битума для использования в различных температурных условиях.
   Температура вспышки – это та температура, которая является технологическим фактором при работе с битумом.
   В обозначении марок буквы показывают «мастика битумная, кровельная и гидроизоляционная», а цифры – степень теплостойкости материала.
   Марка горячей битумной мастики выбирается в зависимости от района строительства и уклона кровли. Для северных районов при уклонах кровель от 0 до 2,5 % применяют марку МБК-К-55, при уклонах 5-10 % – марку МБК-Г-75, при уклоне 10–25 % – марку МБК-Г-85. Для южных районов при уклонах кровель 0–2,5 % – применяют марку МБК-Г-65, при уклонах 2,5-10 % – марку МБК-Г-85, при уклонах 10–25 % – марку МБК-Г-100, при устройстве водонаполненных кровель – марку МБК-Г-55.
   Для получения холодной битумной мастики в готовую битумную смесь вводят органические растворители (соляровое масло, лак, керосин) и пластификаторы, а также антисептики. Соляровое масло растворяет битум и хорошо просачивается в осн ование рулонного материала, что обеспечивает не только качественное склеивание отдельных слоев рулонной кровли, но и прочное соединение рулонного материала с основанием.
   Холодные битумные мастики «Кровлелит-АГ», «Вента-У» или МББ-Х-120 «Вента», «МБК-Х-1» имеют преимущества перед горячими мастиками: из-за малой толщины наносимого слоя мастики снижается расход битума, с поверхности рулонного материала не нужно убирать мелкую минеральную посыпку, т. к. она, впитываясь мастикой, начинает выполнять роль наполнителя, повышая при этом вязкость приклеивающего слоя.
   Резинобитумная мастика изоляционная. Холодная мастика изготовляется из однородной смеси сплава кровельных битумов, мелкой резиновой крошки, пластификатора и антисептика. Выпускается мастика следующих марок: МБР-65, МБР-75, МБР-90, МБР-100. Ее эластичность, гибкость и морозостойкость больше, чем те же показатели горячей кровельной битумной мастики.
   Применяется при устройстве многослойных кровельных покрытий, для приклеивания и склеивания рулонных материалов.
   Битумно-латексные мастики приготавливают, смешивая битумную и латексную эмульсии непосредственно перед нанесением на покрытие. Эмульсии смешивают при температуре не выше 40 °C в обычных мешалках. Мастику готовят следующих марок: ЭБЛ-Х-75, ЭБП-Х-85, ЭБП-Х-100. Приготовление состоит в подготовке битумного вяжущего, эмульгатора и стабилизатора и диспергировании вяжущего в воде в присутствии эмульгатора и стабилизатора.
   В зависимости от уклона кровли и региона строительства применяют различные битумно-латексные мастики теплостойкостью 75-100 °C.
   Битумно-латексно-кукерсольные мастики. Рулонные кровли на мастиках БЛК можно устраивать при температуре наружного воздуха до -20 °C. Кровельные материалы при этом должны быть отогреты в теплом помещении до температуры не ниже +5 °C. Мастики имеют высокие физико-механические показатели, покрытия водонепроницаемы, атмосферостойки и биостойки.
   Мастика изол Г-М получается смешением битумно-резинового вяжущего с высокомолекулярным полиизолбутиленом, кумариновой смолой и наполнителем – асбестом и антисептиком. Мастики изол изготовляют горячие и холодные. В зависимости от назначения их подразделяют на кровельные, приклеивающие (для склеивания рулонных материалов в кровле и гидроизоляции), и гидроизоляционные.
   Холодную мастику изол получают растворением горячей мастики в бензине или других растворителях до 25–30 %. Эта мастика водонепроницаема, теплостойка (+80 °C), биостойка, эластична и до +20 °C деформационно гибка. Ее применяют в кровельных работах при укладке рулонных полотнищ из изола. Расход холодной мастики примерно в 2–2,5 раза меньше, чем горячей.
   Битумно-напритовая мастика в своем составе не имеет воды, поэтому ее можно наносить на кровельные панели и при отрицательных температурах. Мастика водонепроницаема, теплостойка.
   Мастики битумно-каолиновая, битумно-известковая, известково-глиняно-битумная. Для приготовления этих мастик и известково-глинянобитумных паст применяют известь или водный раствор извести в виде известкового теста или известкового молока, битумное вяжущее и воду. Пасты не должны соприкасаться с водой, т. к. это приводит к снижению прочности сцепления с основанием. Пасты применяют только для внутренних слоев гидроизоляционного ковра, в качестве пароизоляции и для приклеивания армирующих прокладок.
   В связи с концерогенностью дегтя, его невысокой долговечностью и прекращению производства толь-кожи и толя покровного, мастики из дегтевого вяжущего мы не рассматриваем.
   Битумно-полимерные мастики типа РБЛ и ЭБЛ можно готовить с использованием любых термопластичных и термореактивных полимеров. При помощи твердого эмульгатора типа глины или извести получают водную дисперсию полимера, которую в дальнейшем используют для эмульгирования битума. Полимер эмульгируют в высоковязком состоянии, смешивая компоненты при 15–50 °C. Соотношение между порошком твердого эмульгатора и полимером по массе берут в пределах от 2:1 до 1:2. Компоненты перемешивают в растворомешалках с порционным добавлением воды.
   Пластоэластичные мастики готовят на основе высокомолекулярного полиизолбутилена. Они отличаются высокой эластичностью, атмосферостойкостью, хорошей адгезией к основанию, обладают абсолютной влаго-, паро-, и воздухонепроницаемостью, способностью заполнять полосы стыков любой конфигурации.
   Полиизобутиленовые мастики в зависимости от температуры делят на три марки: УМ-20, УМ-40, УМ-60 (цифры указывают на низший предел температуры применения). В качестве заполнителя кро ме каменного угля, используют сажу, тальк, литопон, асбест.
   Холодная битумно-бутилкаучуковая мастика МББ-Х-120 «Вента» изготавливается по ТУ 21-37-39-82. Применяется для устройства безрулонной кровли в климатических районах со среднемесячной температурой не ниже -30 °C. Мастика эластична, имеет высокую адгезию к бетонному основанию и кровельным рулонным материалам, а также к асфальтобетону. Жизнеспособность мастики – 2–3 часа. Основания под эту мастику можно грунтовать.
   Хлорсульфополиэтиленовая мастика (ХСПЭ) используется для гидроизоляции ограждающих конструкций, в которых в процессе эксплуатации могут появиться трещины размером до 0,3 мм.
   На заметку
   Наносят мастику по огрунтованному основанию после оклеивания воронок внутренних водостоков и гидроизоляции ендовы и карнизного свеса. При температуре наружного воздуха ниже 5 °C мастику перед нанесением нагревают до 40–60 °C, доведя до текучего состояния.
   Битумно-эмульсионные кровельные мастики АНК-1 и АНК-2 изготавливают по ТУ 21-27-57-80. Мастика АНК-1 применяется для окраски рубероида кровель один раз в два-три года, АНК-2 – для устройства рулонных и мастичных кровель и для их ремонта. Мастика наносится на поверхность многослойной рубероидной кровли двумя-тремя слоями. Каждый последующий слой наносится после полного высыхания предыдущего.
   Битумно-бутилкаучуковая горячая мастика изготавливается по ТУ 21-27-40-78. Она многокомпонентна. В качесте связующего используется смесь битума и бутилкаучука, а в качестве антисептика – каменноугольное масло.
   Выпускают мастику двух марок – МББГ-70 и МБВГ-80. Вторая марка отличается от первой большим содержанием наполнителей (до 15–20 %), большей температуростойкостью (до 80 °C), более высокой температурой размягчения (до 95 °C). Применяется для изоляции примыканий выступающих над крышей частей. Перед нанесением мастику разогревают до температуры 150 °C, чтобы она свободно наносилась на изолированную поверхность слоем 2,5 мм.
   Мастика МБ-Х-75 (мастика битумная холодная) выпускается по ТУ 65-357-80 и представляет собой жидкую дисперсию. Вырабатывается из сланцевого лака кукерсоль, взятого в количестве 65–70 %, наполнителя (асбеста) в количестве 10–20 % и некондиционного синтетического каучука 6-10 % в растворе. Мастика применяется для склеивания и приклеивания рулонных материалов.
   Перед нанесением мастику разогревают до температуры 60–70 °C и тщательно перемешивают.

Эмульсии

   В качестве вяжущего вещества используют битум марки БН-50/50. Если в битум вводится латекс, то эмульсию называют битумно-латексной.
   Эмульсия гидроизоляционная кровельная улучшенная (ГИК-У). Выпускается в соответствии с ТУ-400-24-111-77. Изготавливают ее из смеси битумно-полимерной эмульсии ББЭС с синтетическим латексом.
   Эмульсия применяется для устройства кровель и делится на марки: ЭГИК-У-3, ЭГИК-У-5, ЭГИК-У-7, ЭГИК-У-10, ЭГИК-У-15, ЭГИК-У-20. Цифры в обозначении марки указывают на процентное содержание латекса.
   Кровли из битумных и битумно-латексных эмульсий устраивают только при температуре выше +5 °C.
   Грунтовки представляют собой легкоподвижные растворы в органических растворителях нефтебитума марки БН-70/30 и БН-90/10, каменноугольного пека с температурой размягчения 50–70 °C. Грунтовки наносятся на поверхность тонким слоем, по битумной грунтовке укладывают эмульсию.
   Промышленность выпускает холодную грунтовку КФ-0119. Она наносится кистью при температуре 50–70 °C. Время высыхания грунтовки, нанесенной на свежеуложенную стяжку, 12–48 часов.

Пасты

   Применяются для устройства пароизоляционного покрытия, уплотнения стыков в кровле. Они могут применяться как самостоятельные вяжущие вещества. На них приготавливают холодную мастику. Паста – это густая масса, состоящая из диспергированного битума в воде в присутствии неорганического эмульгатора: извести (гашеной или негашеной) или высокопластичной глины. Наиболее водостойки пасты с известковым эмульгатором. Паста после нанесения на поверхность образует пленку через 34 часа, а через 1–5 суток, в зависимости от типа пасты и скорости испарения, отвердевает.

Кровля из дерева

   Дерево – самый непрактичный кровельный материал. Древесную кровлю делают в двух случаях: когда других кровельных материалов нет или в декоративных целях, например, если весь дом выдержан в скандинавском бревенчатом стиле. Деревянная кровля ненадежна и недолговечна т. к. горит и склонна к гниению и поражению паразитами. Чтобы увеличить долговечность деревянной кровли, ее обрабатывают специальными противогнилостными и огнестойкими составами и антисептиками.
   Внимание!
   Достоинствами деревянных кровель являются дешевизна и простота в устройстве. Чаще всего деревянная кровля встречается в северных лесных районах как наиболее органично вписывающаяся в местный ландшафт. Для устройства деревянной кровли применяются гонт, деревянные плитки, щепа, кровельная дрань и стружки, доски (тесовая кровля) и т. п., выполненные главным образом из хвойных пород дерева.
   Гонт, применяемый для кровли, это клинообразная дощечка с пазом (шпунтом), расположенным вдоль завышенной кромки (рис. 13).
   Рис. 13. Материалы для деревянной кровли: а – деревянные плитки; б – гонт

   Дощечка выпиливается вдоль волокон древесины и скос гонта в таком случае проходит поперек волокон. Дощечку выпиливают размером 500, 600, 700 мм по длине и 70, 80, 90, 100, 110 и 120 мм по ширине. Высота широкого ребра 15 мм, низкого – 3 мм. В высоком ребре устраивается трапециевидный паз глубиной 12 мм, шириной по кромке 5 мм, а на дне 3,5 мм.
   Для изготовления гонта применяют древесину ели, сосны, пихты, кедра, осины. Древесина хвойных пород обладает меньшей плотностью по сравнению с плотностью лиственных и легко обрабатывается. По величине показателя объемного веса (410–500 кг/м3) древесина хвойных пород относится к древесине легкой. Перечисленные выше породы обычно имеют правильную форму ствола, что позволяет с меньшими отходами использовать их при изготовлении гонта. Смолистость этих пород повышает стойкость древесины против загнивания. Древесина осины отличается стойкостью во влажной среде. Древесина ели мягче и легче древесины сосны, быстрее загнивает и менее прочная.
   Требование
   Перед укладкой качество гонта проверяется. На продольных кромках гонта пороки древесины (отщепы, отколы, обзол) не допускаются.
   Гонт перед укладкой обрабатывается антисептирующими и огнезащитными составами.
   Кровельные деревянные плитки представляют собой дощечки клинообразной формы длиной 400, 450, 500, 550, 600 мм и шириной до 70 мм. Скос клина устраивается вдоль волокон, высота толстого конца 13 мм, узкого – 3 мм. По качеству древесины кровельные плитки делятся на три сорта и могут быть изготовлены так же, как и гонт, из древесины ели, сосны, пихты, кедра, осины. В плитках не допускаются отщепы, отколы, трещины, обзолы, сучки. Их влажность не может быть выше 25 %. Перед укладкой они также, как гонт, обрабатываются антисептиками, антипиренами.
   Щепную кровлю выполняют из кровельной стружки, которая получается в результате строгания коротких отрезков древесины хвойных и мягких лиственных пород, о которых говорилось выше. Стружку получают на специальном строгальном станке. Длина ее 400–500 мм, ширина 70-120 мм, толщина 3 мм. Древесина для изготовления стружки не должна иметь сучков и гнили. Влажность древесины стружки может достигать 40 %.
   Кровельная дрань изготавливается на драночном станке, где однослойные полосы древесины срезаются с заготовки вдоль волокон (т. е. дранцы отщепляют от четверти чурки по сердцевидным лучам). Срезанные полосы затем разрезаются на драни длиной 400-1000 мм, шириной 90-130 мм, толщиной 3–5 мм. Дрань кровельная также изготавливается из древесины хвойных пород и мягких лиственных пород, где исключаются такие пороки, как выпадающие и гнилые сучки, гниль, сквозные трещины.
   Тесовая кровля или кровля из досок выполняется из досок толщиной 19–25 мм и шириной 160–220 мм, изготовленных из древесины хвойных пород. Для облегчения стока воды вдоль кромок в досках устраивают желобки-дорожки. Доски должны быть остроганы со всех сторон. Влажность древесины должна быть в пределах 15–18 %, а древесина не должна иметь трещин и сучков.
   Внимание!
   Антисептические составы должны обладать высокой токсичностью по отношению к низшим микроорганизмам, но быть безвредными для людей и животных; сохранять высокую токсичность в течение заданного срока; легко проникать в древесину на требуемую глубину; не ухудшать физико-механические свойства древесины, в частности, не повышать ее гигроскопичность и электропроводимость; не вызывать коррозии металлических частей, применяемых для соединения и крепления деревянных элементов.
   Различают антисептики, применяемые в водных растворах; антисептические пасты на основе водорастворимых антисептиков; масляные антисептики, применяемые в органических растворителях.
   Антисептики, применяемые в водных растворах: фтористый натрий NaF, кремнефтористый натрий Na2SiF6, кремнефтористый аммоний NH4SiF6, хлористый цинк ZnCl2, пентахлорфенолят натрия, оксидефенолят натрия, уралит и препарат ГР-48.
   Антисептические пасты на основе водорастворимых антисептиков по виду связующего подразделяют на битумные, кузбасслаки, экстрактовые и глиняные. Для антисептирования элементов кровли применяются битумные и кузбасслаки.
   Для антисептирования деревянных элементов зданий и сооружений, работающих на открытом воздухе (к ним относятся и деревянные кровли), применяют маслянистые антисептики: каменно-угольные, полукоксовые и сланцевое масло.

Кровля из стали

комментариев нет  

Отпишись
Ваш лимит — 2000 букв

Включите отображение картинок в браузере  →