Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

Гранит проводит звук в десять раз лучше, чем воздух.

Еще   [X]

 0 

100 знаменитых изобретений (Пристинский Владислав)

Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.

Год издания: 2006

Цена: 55 руб.



С книгой «100 знаменитых изобретений» также читают:

Предпросмотр книги «100 знаменитых изобретений»

100 знаменитых изобретений

   Вся история человечества – это непрерывная цепь изобретений. И из этой цепи нельзя вынуть ни одного звена – иначе она вся разрушится. . В этой книге рассказывается о ста знаменитых изобретениях цивилизации – тех, без которых на планете Земля не было бы жизни. Так что цепь изобретений, о которой упоминалось, не прерывается, и не прервется никогда – она будет лишь удлиняться.


Владислав Пристинский 100 знаменитых изобретений

От автора

   Наши предки сумели расселиться по всей Земле от арктических льдов до пустынь и экваториальных лесов благодаря умению приспосабливаться к окружающей среде и преобразовывать ее сообразно своим интересам. Не давая оценки последствиям всех изменений, которые человечество совершило и продолжает совершать в своей среде обитания, в этой книге мы постарались дать панораму развития нашей цивилизации как цивилизации технической, связанной с развитием средств производства.
   Попробуем коротко проследить развитие изобретений.
   Первым орудием человека была палка, которую он использовал как рычаг и как орудие для охоты. Позже появились топор, нож, молоток, шило, иголка.
   Первым механизмом, который позволял накапливать мышечную энергию человека с последующим мгновенным выбросом, стал лук. Затем для накопления потенциальной механической энергии с дальнейшим преобразованием ее в кинетическую начали применять пружину.
   Первой технической революцией в истории человечества стало освоение поддержания и использования огня. Огонь дал начало многим отраслям человеческого знания. Без него были бы невозможны керамика и металлургия, термическая обработка продуктов, двигатели, преобразующие тепловую энергию в механическую.
   Первыми материалами, которые применялись для изготовления орудий, были камень и дерево. Затем, благодаря отжигу глины, появился первый искусственный материал – керамика.
   Вторая революция в истории человечества состояла в переходе от собирательства и охоты к оседлому существованию, в ходе которого люди начали выращивать злаки и другие растения, одомашнивать животных.
   Развитие земледелия привело к появлению новых орудий для обработки земли, уборки урожая, обмолота и измельчения зерен. Люди изобрели мотыгу, серп, цеп для обмолота, ручной жернов для размола зерна.
   Переход от охоты к земледелию потребовал замены звериных шкур, применявшихся в качестве одежды. Ею стали ткани. Сначала пряжу получали, скручивая волокна вручную, позже появились прядильная машина и ткацкий станок.
   Важнейшим изобретением, оказавшим влияние на все отрасли техники, стало колесо. Его начали применять в транспортных средствах, гончарном круге, ручной мельнице.
   Помимо передвижения по суше, человек освоил водную стихию. Это было необходимо для рыбной ловли и передвижения на большие расстояния. Здесь развитие шло от плотов из связок камыша к лодкам-однодревкам. Они управлялись жердями, затем веслами.
   После каменных орудий человек стал осваивать металлы. Это стало возможным, когда уровень развития техники позволил получать излишки еды. Это привело к выделению специалистов, занимавшихся добычей руды, литьем и ковкой. Месторождения руд часто находились на большом расстоянии от потребителя. Так развитие металлургии привело к развитию обмена продуктами труда, что было невозможно без высокого уровня развития земледелия.
   В этот период люди нашли замену собственной мышечной энергии. Они стали использовать животных. Кроме того, появились водяные мельницы, которые можно считать первыми машинами, преобразовывавшими энергию воды в энергию вращения колес.
   Развитие знаний требовало фиксировать их для усвоения другими людьми, так как устная форма не обеспечивала их полного сохранения. Так возникла письменность, повлекшая за собой появление писчих материалов: папируса, пергамента, бумаги.
   Совершенствование водных средств передвижения привело к появлению паруса. Это было бы невозможно без развития ткачества. Кроме того, для путешествий вдали от берегов требовался компас и географические карты.
   Революционное значение в истории человечества имело освоение железа. Его большая распространенность, способность в процессе обработки образовывать с углеродом прочный и твердый сплав – сталь сделали железо незаменимым в производстве различных орудий.
   Для измерения промежутков времени и определения текущего времени суток были созданы часы. Их развитие шло от солнечных, водных, песочных к механическим. Механические часы были достаточно совершенным механизмом и позволяли решать многие технические вопросы своего времени.
   Техническая революция XVII–XVIII вв. потребовала новых источников энергии. Вместо древесного угля стал использоваться каменный. Появились паровые машины. Сначала они применялись на заводах для привода механизмов, а позже на их основе были созданы средства передвижения: паровой автомобиль, пароход, паровоз.
   Возросшие требования к качеству металла и увеличению объемов выплавки способствовали появлению новых способов его обработки. В XVII–XVIII вв. возникли прокатные станы, молоты с механическим приводом, гидравлические прессы.
   В XIX в. широкое применение нашел новый источник энергии – нефть. Продукты ее переработки – керосин, мазут и др. использовались для освещения, обогрева, производства новых материалов – пластмасс. Нефть и нефтепродукты стали использоваться как топливо в двигателях внутреннего сгорания. Эти двигатели имели ряд преимуществ по сравнению с паровыми – больший КПД и удельную мощность. Их развитие привело к появлению автомобилей и теплоходов.
   В XIX в. началось развитие электроэнергетики. Был пройден путь от первых опытов с электричеством до создания тепло– и гидроэлектростанций. Возможность передачи электроэнергии на большие расстояния позволили провести электрификацию промышленных предприятий и домов. Электрический телеграф соединил страны и континенты информационным мостом.
   В самом конце XIX в. было изобретено радио. Приемник Попова стал предшественником ламповых и полупроводниковых электронных устройств. Созданные в XX в. на их основе электронно-вычислительные машины позволили обрабатывать многократно выросшее количество информации.
   В начале XX в. появилась авиация, прошедшая путь от аэроплана братьев Райт до реактивных сверхзвуковых самолетов. Именно авиация проложила дорогу к космическим кораблям.
   Возросшие энергетические потребности во многом были решены благодаря появлению атомной энергетики.
   На протяжении всей истории человечества его спутниками были болезни, многие из которых приобретали характер эпидемий. Защитой от них служили профилактические прививки и лекарства. Их применение позволило намного увеличить среднюю продолжительность жизни людей.
   Сейчас основными направлениями, в которых ведутся исследования, являются разработки новых конструкционных материалов, развитие информационных технологий и поиск новых источников энергии.
   Цель этой книги – осветить наиболее важные изобретения. Мы надеемся, что она позволит оценить масштабы пути, пройденного нашей цивилизацией, и побудит к более глубокому изучению затронутых в книге тем.

Авиация

   Первые попытки обосновать возможность полета на таких аппаратах сделал Леонардо да Винчи в начале XVI в. Он создал несколько проектов аппаратов с машущими крыльями.
   М. В. Ломоносов доказал возможность полета такого аппарата, создав модель вертолета с приводом от пружины.
   В основе полета летательного аппарата тяжелее воздуха лежит закон, выведенный Д. Бернулли в 1738 г. Он заключается в том, что при увеличении скорости потока его давление на стенки сосуда уменьшается. Этот закон был сформулирован для жидкостей, но он справедлив также и для газов. Этот закон объясняет полет птиц: дело в том, что при полете их крылья изгибаются таким образом, что на их нижнюю часть действует подъемная сила, превосходящая силу тяжести, направленную в противоположном направлении.
   Для возникновения подъемной силы крыло самолета должно иметь такую форму, чтобы воздух сверху и снизу обтекал его с разной скоростью – снизу медленнее, чем сверху. Этого можно достичь, сделав нижнюю плоскость крыла абсолютно плоской, а верхнюю – выпуклой. Регулирование подъемной силы можно осуществлять, изменяя угол между плоскостью крыла и потоком воздуха (угол атаки крыла). Подъемная сила увеличивается с увеличением этого угла.
   Теоретические основы полета самолета впервые разработал англичанин Д. Кейли в начале XIX в. Он построил и испытал модель планера и полноразмерный планер.
   В середине XIX в. начались практические работы по созданию самолета. Разрабатывались проекты самолетов с паровыми и реактивными двигателями, делались попытки полета на планере. Несмотря на это были осуществлены лишь непродолжительные полеты моделей и кратковременные полеты на планерах.
   В 1863 г. русский ученый А. В. Эвальд, наблюдая за птицами, составил идеальный проект самолета, включавший все необходимое для его полета: крыло, пропеллер, форму с малым лобовым сопротивлением, установочный угол атаки крыла, органы управления. В качестве двигателя он предлагал использовать паровой двигатель.
   В 1876 г. французский ученый и конструктор А. Пено и механик П. Гошо получили патент на «бесхвостый» самолет-амфибию с паровым двигателем и фюзеляжем в форме лодки. Пено предложил для достижения продольной балансировки самолета отказаться от горизонтального оперения, применив в крыле профиль с отогнутой вверх задней кромкой. Продольная устойчивость при этом должна была обеспечиваться расположением центра тяжести вблизи передней кромки крыла. Поперечная устойчивость достигалась отгибом вверх концов крыла, путевая – вертикальным килем. Для управления продольным креном были предусмотрены рули высоты, расположенные на задней части центроплана крыла. Управление по курсу могло осуществляться рулем направления, а также аэродинамическими тормозами, представляющими собой расщепляющиеся щитки на концах крыла.
   В 1870–1880 гг. постройкой летательного аппарата занялся военный моряк А. Ф. Можайский. В 1881 г. он получил патент на летательный аппарат. Как следует из описания, это был самолет-моноплан. Основные элементы его компоновки применялись в самолетостроении даже спустя много десятилетий после этого.
   В 1881–1883 гг. Можайский построил свой самолет под Петербургом. У него был фюзеляж с деревянными ребрами, обтянутыми материей. К бортам фюзеляжа были прикреплены прямоугольные крылья, слегка выгнутые выпуклостью вверх. Крылья и оперение были обтянуты шелком, пропитанным лаком. Аппарат стоял на стойках с колесами (шасси). На нем были установлены две паровые машины мощностью 20 и 10 л. с., построенные в Англии по заказу Можайского.
   В 1883–1885 гг. изобретатель занимался доводкой аппарата при наземных испытаниях, а в 1885 г. предпринял попытку летных испытаний, закончившуюся неудачей.
   Неудачей закончились также испытания аэропланов американца X. Максима в 1894 г. и француза К. Адера в 1897 г. На них устанавливались паровые машины, слишком тяжелые для самолетов.
   В начале 1890-х гг. немец О. Лилиенталь построил несколько моделей планеров. В их основе лежал принцип полета аиста. Крылья в своем поперечном сечении имели вогнутость, обращенную книзу. Балансировка планеров осуществлялась изменением положения центра тяжести в полете. Материалом конструкции служили ивовые прутья и полотно.
   В первых опытах Лилиенталь стоял с крыльями на ветру, изучая действие аэродинамических сил и прочность конструкции, затем прыгал с крыльями с небольшого помоста в саду своего дома (иногда по 50–60 раз в день). Только два года спустя он решился приступить к полетам с возвышенности в 5–6 м.
   Постепенное усложнение задач и многократность повторения опытов позволили не только самому конструктору освоиться с чувством полета, но и совершенствовать конструкцию планеров. Первые летательные аппараты Лилиенталя еще не имели хвостового оперения. Они оказались неустойчивыми и недостаточно прочными. Успех был достигнут в 1891 г., когда конструктор добавил к крылу вертикальное и горизонтальное оперение и уменьшил размеры крыла.
   Благодаря наличию стабилизирующих поверхностей и сравнительно небольшим размерам аппарата его устойчивость и эффективность балансирного управления заметно улучшились. В 1891 г. Лилиенталю удалось совершить планирующий спуск до 20 м длиной. При взлете испытатель разбегался под уклон навстречу ветру. В полете он управлял планером с помощью ног, опираясь руками на крылья. При приземлении Лилиенталь резко отклонял тело назад, увеличивая угол атаки крыла, скорость полета уменьшалась, и планер совершал плавную посадку.
   В 1892 г., стремясь увеличить продолжительность полетов, Лилиенталь построил планер с большим размахом крыла. Дальность полетов действительно возросла, однако из-за большой парусности управлять планерами оказалось трудно, особенно при сильном ветре. Поэтому в дальнейшем конструктор избегал строить аппараты с размахом крыла больше 6–7 м.
   В 1893 г. Лилиенталь изготовил планер, который стал прототипом всех его последующих монопланов. По конструкции аппарат существенно отличался от прежних машин. Лилиенталь применил складывающиеся крылья. Это было удобно при транспортировке и хранении. Развернутые для полета крылья фиксировались легкосъемными продольными нервюрами, заменяя которые можно было изменять кривизну профиля. Для большей прочности крыло поддерживалось распялками, соединенными с двумя вертикальными стойками на центроплане.
   Еще одним нововведением было применение упруго подвешенного горизонтального стабилизатора. Под действием аэродинамических сил он, преодолевая силу действия пружины, мог поворачиваться на некоторый угол вверх, что облегчало быстрое увеличение угла атаки крыла, необходимое для торможения перед посадкой. Нижнее положение задней кромки горизонтального оперения фиксировалось ограничителями так, что в полете стабилизатор всегда был расположен под отрицательным углом к крылу.
   В результате многолетних упорных тренировок Лилиенталь достиг высокого мастерства в полетах на планере. К середине 1896 г. им было выполнено свыше 2000 полетов, дальность некоторых из них достигала 250 м, а продолжительность – нескольких десятков секунд. В отдельных случаях удавалось подниматься выше точки старта, т. е. совершать парящий полет. Овладев техникой балансирного управления, Лилиенталь отваживался летать при значительной скорости ветра (на бипланах – до 10 м/с).
   9 августа 1896 г. Лилиенталь погиб, упав на планере с высоты 15 м.
   В конце XIX – начале XX века предпринимались попытки построить самолет.
   В 1899 г. конструированием и испытанием планеров занялись американцы – братья Райт. В течение 1899–1902 гг. они создали несколько оригинальных моделей. Испытание всех аппаратов братья Райт производили на берегу Атлантического океана возле городка Китти-Хоук.
   Важным изобретением братьев Райт стало обеспечение поперечной устойчивости планера путем перекоса концов его крыльев. В своих первых моделях они отказались от хвостового оперения и от регулирования устойчивости аппарата путем перемещения центра тяжести. Вместо этого они снабдили планер рулями.
   При постройке своих аппаратов братья Райт столкнулись с недостатком теоретических знаний в области аэродинамики. Тогда изобретатели соорудили аэродинамическую трубу, в которую нагнетали воздух при помощи вентилятора. В ней они испытали более 200 различных профилей из листового железа. Таким образом измерялось сопротивление различных поверхностей и профилей крыльев при различных углах атаки. Результаты опытов были сведены в таблицы. Это помогло им при конструировании нового планера. Он имел вертикальный хвост с подвижным рулем. Поворачивая руль в сторону противоположного крыла можно было восстановить поперечное равновесие, компенсируя разницу в сопротивлении опущенного и поднятого крыльев. Для одновременного воздействия руль и крылья были соединены тросами и управлялись одним рулем.
   Высота полета регулировалась поверхностями руля высоты, расположенного в передней части планера. При движении вперед связанного с этими поверхностями рычага кривизна поверхностей уменьшалась, и нос планера опускался.
   Между поверхностями руля высоты располагались вертикальные серповидные поверхности, вращавшиеся в направлении, противоположном направлению движения поворотного руля. Они компенсировали силу, вращающую планер вокруг собственной оси.
   Новый планер показал прекрасные летные качества: он мог парить в воздухе около минуты, хорошо управлялся, поднимаясь, опускаясь, разворачиваясь в разные стороны.
   В конце 1902 г. после успешных испытаний этого планера братья Райт приняли решение конструировать на его основе самолет.
   Двигатель и пропеллеры были изготовлены в течение зимы и весны 1903 года. Построенный при участии братьев Райт четырехцилиндровый бензиновый двигатель водяного охлаждения мощностью 12 л. с. представлял собой облегченный вариант обычного автомобильного двигателя и весил вместе со всеми вспомогательными системами 90 кг. По расчетам изобретателей, он обладал способностью поднять их самолет в воздух.
   При разработке пропеллера использовался опыт аэродинамических исследований, проведенных Райтами в 1901–1902 гг. Рассматривая воздушный винт как вращающееся крыло и стремясь подобрать наивыгоднейший для каждого сечения профиль, им удалось создать пропеллер с рекордным для своего времени, КПД – 66 %. Два деревянных двухлопастных винта соединялись с двигателем с помощью цепной передачи, уменьшавшей частоту вращения пропеллера втрое. Общий вес трансмиссии и винтов составлял 41 кг.
   В связи с возросшим взлетным весом размеры крыла самолета были по сравнению с крылом планера увеличены. Увеличена была также площадь органов управления – одинарные поверхности рулей заменили двойными. Как и на планере, руль направления автоматически отклонялся при перекашивании крыла. Под крылом были установлены полозья. Отказ от применения колесного шасси объясняется преобладанием песчаной почвы в Китти-Хоук, где должен был испытываться самолет.
   Сборка самолета была завершена в начале ноября 1903 года. Аппарат представлял собой биплан с двумя толкающими пропеллерами, вращающимися в противоположных направлениях. Двигатель был установлен на нижнем крыле, сбоку от летчика. Пилот размещался в полете лежа и управлял перекашиванием крыла движением бедер. Перед пилотом были расположены две рукоятки, одна из которых служила для управления рулем высоты, другая – для включения двигателя. Взлетный вес самолета равнялся 340 кг, площадь крыла – 47,4 м2, размах – 12,3 м, длина – 6,4 м, диаметр винтов – 2,5 м.
   В процессе наземных проб двигателя выяснилось, что прочность валов пропеллеров недостаточна. Поломки, вызванные перебоями в работе двигателя, удалось устранить только после замены пустотелых валов сплошными. 12 декабря самолет был готов к летным испытаниям.
   В связи с большим весом самолета Райты отказались от прежнего метода старта, когда помощники разгоняли аппарат до скорости отрыва, поддерживая его за крыло. Кроме того, такой способ взлета мог вызвать сомнения в том, что старт происходил только за счет мощности двигателя. Разбег должен был происходить по деревянному рельсу длиной 18 м, верхняя поверхность которого была обшита железом. Самолет катился по рельсу на маленькой тележке, отделяемой от аппарата после взлета. Для уменьшения длины разбега старт должен был происходить строго против ветра.
   Первые испытания «Флайера» происходили 14 декабря 1903 года. Самолет поднялся в воздух, но через несколько мгновений после взлета упал с высоты 5 м. Время нахождения в воздухе составило всего 3,5 с, дальность полета – 32 м.
   17 декабря состоялись повторные испытания. Всего было выполнено четыре полета, общая продолжительность которых составила менее двух минут. Эти испытания стали выдающимся событием в истории человечества – впервые человеку удалось осуществить контролируемый полет на самолете.
   В дальнейшем братья Райт усовершенствовали свой первый самолет. В 1905 г. они уже совершали полеты со скоростью 60 км/ч продолжительностью 38 мин.
   В это время в Европе также шли работы над совершенствованием планеров и постройкой самолетов. В 1904 г. француз Эсно-Пельтри на своем планере впервые применил элероны. Они имели вид двух независимо действующих горизонтальных поверхностей, расположенных на балках перед крылом, и предназначались для регулирования крена аппарата.
   Конструированием самолетов занимались и французы Фербер, Вуазен, Блерио, Сантос-Дюмон, в Дании – Эллехаммер.
   К типичным аэродинамическим компоновкам этого периода относятся: биплан с коробчатым крылом, передним рулем высоты и, как правило, толкающим пропеллером; биплан (мультиплан) без перегородок на крыле, с тянущим винтом и с заднерасположенным оперением; моноплан «нормальной» схемы с тянущим винтом; моноплан с самобалансирующимся крылом без стабилизирующих хвостовых поверхностей.
   1909 г. стал годом триумфа в истории самолета. Его перспективность доказывали постоянно улучшающиеся рекорды дальности, высоты и скорости, дальние внеаэродромные полеты. Так, Л. Блерио совершил перелет на самолете «Блерио-11» из Франции в Англию через Ла-Манш. В состоявшихся в конце августа первых авиационных состязаниях в Реймсе (Франция) приняли участие 38 самолетов, на которых были выполнены 87 полетов дальностью более 5 км, 7 – дальностью более 100 км.
   С 1909 г. началось серийное производство самолетов, во Франции открылись первые школы по подготовке пилотов.
   Уже в то время в авиации наметились два направления: военное и гражданское.
   В 1911 г. на самолете впервые был установлен пулемет. До Первой мировой войны были также созданы бомбы, самолетные радиостанции, ранцевый парашют.
   В это время летчики столкнулись с таким явлением, как штопор – снижение самолета по крутой нисходящей спирали малого радиуса с одновременным вращением вокруг всех трех осей. Вначале заваливание в штопор вело к гибели самолета. В 1916 г. русский летчик К. Арцеулов впервые намеренно ввел свой самолет в штопор и вывел из него. По инициативе Арцеулова штопор как фигура высшего пилотажа был введен в программу обучения летчиков.
   В Первую мировую войну самолеты вначале использовались для разведки и корректировки артиллерийского огня, затем их стали применять для поражения воздушных и наземных целей. Появилось разделение на разведывательные самолеты, истребители и бомбардировщики.
   За время войны скорость самолетов возросла до 200–220 км/ч. В 1918 г. численность самолетов превысила 11 тысяч.
   В послевоенные годы авиация бурно развивалась во многих странах. Появились новые конструкции самолетов, совершенствовались методы их расчетов. Если в 1920-х годах наиболее распространенной была бипланная схема компоновки самолета, то к середине 1930-х наметился окончательный переход к монопланной.
   В СССР в 20-е годы были созданы конструкторские бюро A. Н. Туполева, H. Н. Поликарпова. Среди первых самолетов – пассажирские самолеты АК-1 конструкции В. Л. Александрова и B. В. Калинина, истребитель И-1 Поликарпова. Под руководством Туполева были сконструированы цельнометаллический самолет АНТ-2, разведчик АНТ-3, тяжелый бомбардировщик АНТ-4.
   Со второй половины 20-х гг. стал широко применяться дюралюминий, заменивший распространенные до того полотно и дерево.
   Среди достижений авиации можно отметить перелет через Атлантику американца Ч. Линдберга в 1927 году.
   В 20-е гг. развиваются пассажирские авиаперевозки. Первые авиалинии появились в Германии и Франции. В СССР первый регулярный пассажирский маршрут был открыт в 1923 г. Он соединил Москву и Нижний Новгород.
   Постоянно растут скорости самолетов. Это достигается как за счет увеличения мощности двигателей, так и благодаря снижению аэродинамического сопротивления на 20–25 %. Снижение обеспечивалось решением проблемы втягивания шасси в полете, внедрением винтов изменяемого шага, переходом к закрытым кабинам, обтекаемым формам фюзеляжей, применением гладкой обшивки крыла. Это привело к увеличению скорости полета на 20–30 % при той же мощности двигателей.
   В 30-е годы значительно возросла дальность полета. В 1937 г. были совершены два беспосадочных перелета из Москвы через Северный полюс в США.
   18–20 июня В. П. Чкалов, Г. Ф. Байдуков и А. В. Беляков, покрыв расстояние в 8504 км за 63 ч 16 мин, совершили посадку в Ванкувере.
   12–14 июля М. М. Громов, А. Б. Юмашев и С. А. Данилин преодолели 10 148 км за 62 ч 17 мин и приземлились в Калифорнии, установив мировой рекорд дальности беспосадочного перелета.
   Продолжает развиваться военная авиация. Во время гражданской войны в Испании в небе столкнулись советские самолеты И-15 и И-16 конструкции Поликарпова, СБ и немецкие мессершмитты и юнкерсы.
   Опыт войны в Испании дал новый толчок развитию авиации. Немцы решили ставить на свои самолеты новые двигатели. В СССР стали разрабатывать принципиально новые конструкции самолетов А. С. Яковлев, С. В. Ильюшин, В. М. Петляков и др.
   Скорость истребителей достигла 600 км/ч и более. Повысилась дальность полета (до 3–4 тыс. км), скорость (до 550 км/ч) и бомбовая нагрузка бомбардировщиков (до 3–4 т).
   В 1938 г. в КБ Ильюшина был сконструирован самолет огневой поддержки сухопутных войск – штурмовик Ил-2. Он имел высокую прочность, большую огневую мощь, бронированную защиту важнейших узлов.
   Во Второй мировой войне наибольшее применение получили легкие, маневренные, простые в управлении самолеты. В небе над Европой, Азией, Тихим и Атлантическим океанами развернулись ожесточенные воздушные сражения. Самолеты прикрывали войска с воздуха, наносили удары по войскам и кораблям противника, вели разведку, перебрасывали десанты.
   Самыми распространенными были истребители Як-3, Як-7, Як-9, Ла-5 и Ла-7 (СССР), «Мессершмитт-109» и «Фокке-Вульф-190» (Германия), «Харрикейн» и «Спитфайр» (Великобритания), «Мустанг» и «Аэрокобра» (США). Среди бомбардировщиков следует выделить советские Пе-2, Ил-4, Ту-2, немецкие Ю-87 и Ю-88, американские Б-17, Б-25 и Б-29, английский «Ланкастер». Самым массовым самолетом Второй мировой стал штурмовик Ил-2.
   К концу войны поршневая авиация исчерпала свои возможности. Максимальная скорость самолетов достигала 720 км/ч. Дальнейшее ее повышение было ограничено чрезмерным ростом габаритов и веса двигателя, снижением КПД винта.
   Качественный рывок в авиастроении произошел с появлением реактивного двигателя. Его разработка началась в 1930-е годы. Первые полеты были осуществлены на самолетах с жидкостно-реактивными двигателями. В 1939 г. в Германии был сконструирован и испытан самолет «Хейнкель». В СССР первый реактивный полет был осуществлен в 1940 г. на ракетоплане конструкции С. П. Королева. В 1941 г. в Англии поднялся в воздух самолет «Глостер» с турбореактивным двигателем конструкции Ф. Уиттла.
   В 1941–1943 гг. в Германии были выпущены небольшими сериями реактивные истребители Ме-262, Me-163, Хе-162. Но решающего влияния на ход воздушной войны они не оказали. Единственным реактивным самолетом союзников, принявшим участие в войне, стал английский «Метеор».
   Первые послевоенные реактивные самолеты представляли собой обычные самолеты, на которых вместо поршневых были установлены реактивные двигатели. Однако с увеличением скорости до 1000 км/ч конструкторы и летчики столкнулись с такими явлениями, как сжимаемость воздуха, резкое повышение его сопротивления, снижение устойчивости и управляемости машин.
   Исследования показали, что дальнейшее развитие реактивной авиации связано с изменением конструкции крыльев: они должны были иметь тонкий профиль и стреловидную форму в плане.
   В 1947 г. в СССР был создан первый реактивный истребитель со стреловидным крылом МиГ-15. На нем были установлены лицензионные реактивные двигатели «Роллс-Ройс», катапультирующее кресло и гидроусилители рулей. Вооружение МиГ-15 составляли скорострельная пушка и 2 пулемета. Скорость достигала 1100 км/ч.
   В это же время в СССР были построены реактивные истребители Ла-15, Як-23 и реактивные бомбардировщики Ил-28 и Ту-14.
   В 1948 г. экспериментальный самолет Л а-176 при полете со снижением достиг скорости звука.
   Первые боевые столкновения реактивных самолетов состоялись в начале 1950-х гг. во время войны в Корее. Там советские МиГ-15 и МиГ-17 показали свое превосходство над американскими «Сейбрами».
   В 1950–1960-х годах военная авиация получила сверхзвуковые реактивные самолеты, которые могли летать в любую погоду. На вооружении появились ракеты и ядерное оружие. Во многих странах были созданы самолеты вертикального взлета и посадки, способные взлетать и приземляться на небольших площадках. В первую очередь они нашли применение в морской авиации, в частности на авианосцах.
   Увеличение скорости привело к созданию самолетов с изменяемой стреловидностью крыла: при взлете и посадке площадь крыла максимальна, в полете она уменьшается.
   Дальность полета самолетов значительно возросла, благодаря дозаправке топливом в воздухе. Это позволило совершать полеты дальностью 12 000 км и более.
   В послевоенные годы развивалась и гражданская авиация: создавались новые самолеты, открывались новые воздушные линии.
   В 1949 г. состоялся первый рейс английского реактивного пассажирского самолета «Комета». Он был оснащен турбовинтовым двигателем. В 1956 г. на пассажирских авиалиниях появился первый турбореактивный самолет – советский Ту-104. В 1958 г. взлетел американский «Боинг-707», а в 1959 г. – французская «Каравелла».
   В 1960-е годы были созданы первые сверхзвуковые пассажирские самолеты. Первым совершил свой полет Ту-144. Это произошло 31 декабря 1968 г. Несколькими месяцами позже взлетел англо-французский «Конкорд». Их скорость достигала 2500–3000 км/ч, а дальность полета – 8000 км.
   Помимо пассажирских перевозок гражданская авиация используется в борьбе с вредителями лесов и полей, разведке полезных ископаемых, метеорологических наблюдениях, исследованиях труднодоступных районов и других областях народного хозяйства.

Автомобиль

   Телегу изготовили в 1769 г. в мастерских парижского арсенала. Она весила целую тонну, столько же пришлось на воду и топливо, еще столько же на долю самой паровой машины.
   Платформа для грузов крепилась к дубовой раме телеги. Рама опиралась на заднюю ось с колесами артиллерийского типа. С управлением телегой еле справлялись два человека. Перевозя до 3 т груза, телега передвигалась со скоростью пешехода – 2–4 км/ч.
   Кюньо обратился к «экипажной» практике: лошадь находится впереди экипажа и тянет его за переднюю ось, значит, и машину следует поставить вперед и осуществить передачу на переднее колесо. Но тут возникла трудность: шток паровой машины перемещается в плоскости, параллельной плоскости колеса. Если закрепить двигатель на платформе телеги, то ось колеса нельзя будет поворачивать. И Кюньо смонтировал всю паровую машину на колесе, тогда машина стала отклоняться на вилке влево или вправо вместе с колесом.
   Две лошадиные силы, которые развивала машина, давались нелегко. Несмотря на большой объем котла, давление пара быстро падало. Чтобы поддерживать давление, через каждые четверть часа приходилось останавливаться и разжигать топку. Эта процедура отнимала столько же времени, сколько длилась поездка.
   Однажды, совершая испытательную поездку, Кюньо и кочегар не справились с управлением. Телега сделала слишком крутой поворот – котел упал и взорвался. Кюньо построил еще одну телегу, но она, как и первая, не нашла практического применения.
   В начале XIX в. мощность экипажных паровых машин увеличилась в 8–10 раз по сравнению с машиной Кюньо, уменьшились их размеры и расход топлива. Машину располагали, как правило, сзади повозки. Шток, передающий движение поршня храповику на оси колес, заменили качающимся шатуном. Сложился так называемый кривошипный механизм, впоследствии почти полностью перешедший на автомобильный двигатель.
   Четыре «паровика» Голдсуорси Гэрнея совершали регулярные рейсы и наездили в 1831 году 6 тыс. км. Более успешно организовал движение паровых дилижансов Уолтер Хэнкок. Правда, рейс длиной в 120 км длился около 12 ч, из которых ходовых было только 7–8 ч. Остальное время уходило на заправку водой. Потом догадались прицепить к дилижансу тендер с водой и коксом. Хэнкок использовал высокое давление пара в котле и применил цепную передачу от коленчатого вала машины к колесам. Девять 15-местных повозок Хэнкока совершили около 700 рейсов и наездили 7 тыс. км со скоростью до 30 км/ч.
   На какое-то время паровые автомобили возродились во Франции. Их двигатели уже были оснащены керосиновыми горелками вместо угольных топок, запас воды мог быть уменьшен, змеевик быстро разогревался, непрерывно образовывалось необходимое для работы машины количество пара. На паровых повозках начали применять эластичные шины, рулевую «трапецию», механизм для вращения колес одной оси с различными оборотами – дифференциал, цепной и даже карданный привод от паровой машины к ведущим колесам.
   Изобретателями автомобиля признаны Готлиб Даймлер и Карл Бенц. Работали они в одно и то же время в соседних германских городах Маннгейме и Бад-Канштатте (пригород Штутгарта). Оба построили действующие самодвижущиеся повозки в 1885 году и должным образом оформили патенты. Бенц – на «Экипаж с газовым двигателем», Даймлер – на «одноколейный» экипаж, а в 1886 году и на четырехколесный.
   При жизни они так никогда и не встретились, хотя созданным ими автомобильным фирмам суждено было в 20-е годы XX в. слиться в известную ныне всем компанию «Даймлер – Бенц».
   У двухместной машины Бенца были велосипедные колеса, а кузов с установленным на трубчатую раму диванчиком напоминал пролеточный. В течение 7 лет Бенц строил моторные повозки трехколесными. Эта схема, казавшаяся простой, и ранее привлекала конструкторов по соображениям облегчения управления машиной. Первая машина Даймлера была и вовсе двухколесной, представляла собой «моторный велосипед». Даймлер и его последователи строили четырехколесные 4–6-местные автомобили с экипажным кузовом, колесами и тормозами. А последователи Бенца чаще всего (до начала XX в.) – трехколесные, 2–3-местные, с проволочными спицами колес, легкой трубчатой рамой, велосипедным рулем. От первых произошел собственно автомобиль, от вторых – то, что на грани веков называли «вуатюреткой», т. е. колясочкой, автомобильчиком.
   «Безлошадные экипажи» Бенца и Даймлера не нашли спроса на родине. Горожан пугали хлопки от взрывов паров бензина в двигателе. Даймлеру пришлось испытывать повозки по ночам на загородных дорогах. Бенцу вменили в обязанность перед каждой поездкой сообщать в полицию маршрут и места остановок, для того чтобы можно было привести в готовность пожарные команды.
   Изобретатели продали свои патенты во Францию, благодаря чему та долгое время была ведущей автомобильной державой. Автомобили, построенные по патентам Бенца и Даймлера или снабженные их двигателями, появились на рынке как изделия французских фабрикантов.
   Вплоть до начала XX в. автомобиль рассматривали исключительно как занятную механическую игрушку, спортивный снаряд, экипаж для прогулок или торжественных выездов. В США до Первой мировой войны в официальных документах фигурировал термин «плежер-кар» (т. е. «повозка для удовольствия»), обозначавший «легковой автомобиль». Его техническая характеристика соответствовала требованиям, обычным для конного экипажа. Журнал «Мотор-Эйдж» (США, 1900) в статье «Что такое превосходный автомобиль» писал:
   «Это красивый стильный экипаж, который может быть пущен в ход мгновенно и без предшествующих продолжительных и трудоемких приготовлений, может быть мгновенно же остановлен, может двигаться с любой скоростью вплоть до 25 миль в час, полностью контролироваться любым лицом без специального образования, двигаться по неровным улицам и дорогам, преодолевать крутые подъемы, словом, выполнять все, что выполняет лошадь или упряжка лошадей с экипажем, и выполнять это более удовлетворительно, с меньшими затратами, и в то же время не иметь дефектов, присущих лошади, и новых собственных дефектов».
   При всей, с нынешней точки зрения, скромности этой характеристики она была для своего времени именно «превосходной»: ни один тогдашний автомобиль не мог ей соответствовать. Любые, даже совсем короткие, поездки на автомобиле становились событием, в особенности, если они завершались благополучно. Начинались они с длинной процедуры запуска двигателя.
   Сначала автомобилист открывал каретный сарай, где хранилась «коляска» – высокая, на больших деревянных колесах, на сплошных твердых резиновых шинах-бандажах, с пролеточным кузовом. Вооружившись заводской инструкцией, автомобилист приступал к пуску двигателя. Он «устанавливал коляску по возможности горизонтально», потом соединял глушитель и выпускную трубу шлангом и наполнял бак горючим, так как на ночь топливо сливали во избежание подтекания. Затем вставлял провод зажигания в розетку, открывал кран подачи топлива, нажимал иглу карбюратора, чтобы топливо не переливалось. Закончив подготовительные операции, автомобилист прокручивал торчащую спереди, сзади или сбоку рукоятку «примерно пять раз», приоткрывал карбюратор, а затем декомпрессионный краник для устранения сжатия в цилиндре – оно затруднило бы заводку. Еще несколько оборотов рукоятки до появления вспышки в цилиндре двигателя. Тут автомобилист снова манипулирует с краниками. Если двигатель работал с перебоями, следовало отрегулировать винтом подачу горючей смеси, а если двигатель не заводился, то приходилось вывертывать свечу зажигания, промывать и просушивать ее, а из карбюратора сливать накопившееся за время тщетных попыток топливо. После того как двигатель заработал, можно было ехать.
   Управление первыми автомобилями отдаленно напоминало управление современным автомобилем, но требовало значительно больших усилий, чем теперь. Кроме привычных ныне рычагов и педалей, существовали ручки на рулевой колонке для управления подачей топлива и установкой зажигания да еще насос для подкачки топлива в карбюратор. Из-за малой мощности двигателя пассажиры вынуждены были на трудных участках дороги выходить из машины, чтобы облегчить ее, и идти с ней рядом, а то и подталкивать.
   Тогда более перспективными считались электрические и паровые автомобили. В США, например, в 1899 году только 22 % всех выпущенных механических экипажей составляли «бензиномобили», 38 % – электромобили и 40 % – «паромобили». Но уже к 1905 году положение изменилось: 70 % автомобилей с двигателем внутреннего сгорания и по 15 % электрических и паровых, в 1910 году доля двух последних видов не превышала 1 %, а в 20-х их стало ничтожно мало.
   Не оказали влияния на этот процесс и такие сенсации, как мировые рекорды скорости, установленные в 1898 году на электромобиле (105 км/ч, гонщик Женатци), в 1902 и 1906 годах на паровых автомобилях (120 и даже 204 км/ч, гонщики Серполле и Стенли).
   Увеличить мощность двигателя и тем самым скорость автомобиля было не так-то легко. Увеличение диаметра цилиндра приводило к возрастанию сил, действующих на его стенки и на детали кривошипного механизма. Если увеличить длину хода поршня, то цилиндр трудно разместить на автомобиле из-за роста размеров кривошипа. В обоих случаях двигатель становится тяжелее. Эти обстоятельства привели конструкторов к мысли – умножить число цилиндров. Даймлер уже свои самые ранние двигатели делал двухцилиндровыми (V-образными), а в 1891 году построил первый четырехцилиндровый.
   Увеличение числа цилиндров не только позволяло делать двигатель компактным при росте его мощности, но и обеспечивало плавность хода. В четырехцилиндровом двигателе каждый рабочий ход приходится на пол-оборота коленчатого вала, тогда как у одноцилиндрового двигателя – на два оборота.
   Хотя автомобильный двигатель в отличие от стационарного можно было охлаждать потоком встречного воздуха, конструкторы скоро пришли к выводу об эффективности водяного охлаждения. Оно прошло ряд стадий развития, пока не распространились змеевиковые радиаторы, иногда опоясывавшие весь капот двигателя. На «мерседесе» (1901 г.) впервые применен знакомый ныне трубчатый или сотовый радиатор с большой поверхностью охлаждения, изменивший облик автомобиля.
   Для автомобиля пришлось создать новые механизмы – привод рулевого управления и устройство для изменения на ходу усилия, передаваемого от двигателя к колесам. Примером для рулевого привода послужил судовой румпель – поводок или маховичок-штурвал, передвигавший вправо-влево тягу рулевой трапеции.
   До конца XIX в. для автомобиля была типичной компоновка с двигателем сзади (под сиденьем) и с ременным приводом от него на поперечный вал, далее – цепной привод на задние колеса.
   С ростом скорости увеличились мощность, размеры и масса двигателя. Возникли новые сложности. Становилось все труднее размещать двигатель под сиденьями. К тому же он требовал хорошего охлаждения. Приводные ремни не выдерживали передаваемых усилий, проскальзывали на шкивах.
   Эмиль Левассор, главный конструктор французской фирмы «Панар – Левассор», предложил новую компоновку автомобиля: двигатель и радиатор охлаждения расположены спереди; усилие передается через механизм сцепления и коробку передач на промежуточный поперечный вал, а от него – цепями на задние колеса. Сцепление состоит из двух конических дисков, которые можно сблизить, ввести в зацепление во время движения автомобиля или отдалить при перемене передач и на стоянках. В коробке передач находятся два вала с набором шестерен различных диаметров на каждом (вместо набора ременных передач). Вводя в зацепление ту или иную пару шестерен, можно изменять частоту вращения вторичного вала и величину передаваемого колесам усилия.
   Если сравнить компоновку автомобилей XX в. с компоновкой автомобиля Левассора, то они ненамного отличались. В 1898 г. французский конструктор Луи Рено заменил цепной привод карданным валом, два вала в коробке передач – тремя.
   Развитие автомобиля вело к усложнению его конструкции: увеличение скорости требовало прожекторов, закрытые кузова – внутреннего освещения, пуск двигателя – особого электромотора. На автомобиле появился энергоемкий и надежный аккумулятор. Это позволило устранить сложное и тяжелое магнето, вернуться к простой и безотказной батарейной системе зажигания.
   Пуск двигателя имел не меньшее значение, чем зажигание. Вращая рукоятку, нужно было преодолевать давление в цилиндрах двигателя. Обратные удары рукоятки приводили к травмам рук водителей. Конструкторы стремились заменить рукоятку более удобным устройством. Простым и надежным оказался электромотор с шестеренкой, зацепляемой в нужный момент с зубчатым венцом на маховике двигателя. Маховик начинал вращаться и запускал двигатель. Такой стартер изобрел американский конструктор Ч. Кеттеринг.
   Рядом с двигателем размещали механизм сцепления. В маховике двигателя вытачивали коническую поверхность, а на первичный вал коробки передач надевали передвижной конус, покрытый кожей. Конус прижимала к маховику пружина, соединяя двигатель с коробкой передач. Чтобы выключить сцепление, нужно было нажимом на педаль преодолеть сопротивление пружины и оттянуть конус от маховика.
   На смену конусному пришло дисковое сцепление. В дисковом сцеплении, нажимая на педаль, водитель отводит диск от маховика, отпуская педаль – предоставляет пружине прижимать диск. Первые такие сцепления состояли из многих дисков. Постепенно число дисков свели к одному-двум и снабдили накладками из специального, не требующего смазки, долговечного материала.
   В коробках передач начала XX в. предусматривались три передачи для движения вперед и одна для заднего хода. Переключение передач требовало большой ловкости, редко проходило без угрожающего скрежета шестерен, а то и поломок их зубьев, визжали шестерни и во время движения автомобиля. Поэтому конструкторы упорно работали над совершенствованием коробки передач.
   Система торможения отставала в развитии от других систем и механизмов автомобиля. Долго использовали экипажные тормоза-башмаки, прижимавшиеся к шинам. Потом добавили трансмиссионный тормоз с горизонтальной педалью рояльного типа. Она стягивала ленту, охватывавшую барабан на выходном валу коробки передач. Дополнили трансмиссионный тормоз барабанами, установленными на задних колесах, но опять-таки с ленточными тормозами, действовавшими более или менее эффективно только при движении автомобиля вперед. Лишь на отдельных машинах устанавливали на задних колесах тормоза с колодками, наподобие нынешних.
   Долгое время на автомобилях устанавливалась подвеска, состоящая из листовых рессор, как на каретных экипажах. Она не устраняла тряску автомобиля на большой скорости и неровных дорогах того времени. Из множества вариантов были выбраны два: продольные и поперечные полуэллиптические рессоры. В дополнение к ним применяли фрикционные амортизаторы. Трение в их шарнирах гасило качку рамы и кузова после наезда на ухаб.
   Шина на колесо автомобиля была надета в конце XIX в. братьями Мишлен. Она должна была сохранять давление воздуха и защищать камеру от проколов подковными гвоздями, в изобилии рассыпанными по дорогам. В начале XX в. самые лучшие шины, сделанные на заказ для гонок, приходилось менять десятки раз на пробеге в 200–300 км. Важно было облегчить смену шин. Вначале они не были легкосъемными, и автомобилист после замены должен был накачать шину до давления 5–6 атмосфер. Позже кольцо из резинового рукава превратили во внутреннюю камеру шины, окружив ее защитной резиновой покрышкой на парусиновой основе.
   На рубеже XIX–XX вв. стали популярными автомобильные гонки. Участие в них позволяло владельцам автомобильных фирм рассчитывать на большой денежный приз, хорошую рекламу своих автомобилей, а также проверить механизмы при максимальных нагрузках. Это привело к созданию мощных гоночных автомобилей. Большинство автомобилей были сложными и очень дорогими.
   Так продолжалось до тех пор, пока американец Генри Форд не начал выпускать свою знаменитую модель «форд-Т». В 1899 г. молодой Форд основал Детройтскую автомобильную компанию. В интересах бизнеса он решил выпускать дешевую массовую машину. Замысел Форда заключался в разделении работы по изготовлению автомобиля на множество операций, каждая из которых поручалась 1–2 рабочим, освобожденным от выполнения вспомогательных операций. Изготовляемые детали и собираемые механизмы двигались мимо рабочих на цепях, рольгангах, лентах. Массовое производство позволило снизить цену на автомобиль.
   «Форд-Т» имел все необходимое для безопасного движения, на нем не было излишеств. Простота устройства, а также прочные материалы позволили снизить массу автомобиля до 550 кг. Двигатель мощностью 20 л. с. разгонял машину до скорости в 70 км/ч.
   Цилиндры двигателя «форда-Т» были отлиты в одном блоке. Топливо подавалось самотеком из бака под сиденьем, поэтому на крутых подъемах горючее не поступало к карбюратору. В коробке было только две передачи. В машине отсутствовал аккумулятор, фары работали от магнето системы зажигания и при работе на малых оборотах светили слабо. Но, несмотря на эти и другие недостатки, машина удовлетворяла небогатых автомобилистов.
   Уже в конце XIX в. произошло разделение автомобилей на легковые, грузовые и автобусы. Первая попытка наладить в Германии автобусное сообщение вместо омнибусного потерпела крах: на мокрых и заснеженных мостовых машины скользили на железных или сплошных резиновых ободьях. Автомобильные омнибусы возродились в 1904–1905 годах. Двигатель располагался под салоном автобуса, что позволило сократить его длину. В целях экономии площади автобусы делали двухъярусными. К 1914 г. число автобусов в одном только Лондоне достигло 2000.
   Широкое производство грузовиков началось тогда, когда автомобиль стал более надежным. Сначала на шасси легкового автомобиля вместо задней части кузова устанавливались ящики. Это значительно снижало скорость и экономичность грузового фургона. С появлением в начале XX века автомобилей большей грузоподъемности облик грузовиков изменился. Они приобрели большую площадь кузова, массивную ходовую часть, двойные скаты задних колес. Однако работа водителя требовала больших физических усилий.
   Долгое время на грузовых автомобилях сохранялась цепная передача. Это было связано с необходимостью большого передаточного числа. Позже стали применять двойную передачу и колесные редукторы.
   В 1896 г. легковому автомобилю нашлось еще одно применение: в Париже появились моторизованные повозки – фиакры. С повозок сняли оглобли, установили бензиновый двигатель, а возле сиденья кучера поставили рулевую колонку и рычаги управления. В 1905 г. был изобретен счетчик оплаты, или таксометр, давший название таксомоторам, или сокращенно такси.
   К 1914 г. количество автомобилей на земном шаре достигло 2 000 000.
   В Первую мировую войну автомобили, благодаря своей подвижности, высокой скорости, грузоподъемности, сыграли большую роль. Они применялись для доставки военных грузов, переброски войск. В военных целях применялись даже парижские такси: в 1914 г. они перевезли целую бригаду на опасный участок фронта.
   После Первой мировой войны начался расцвет автомобилестроения. Автомобиль доказал свою пригодность для личных поездок, крупных перевозок людей и грузов. На автомобильных заводах стал широко применяться поточный метод производства военных автомобилей. Конверсия военного производства привела к переходу многих заводов на выпуск автомобилей. На конструкции автомобилей, особенно дорогих, оказала влияние авиация. Их двигатели были авиационными, детали выполняли из легких сплавов, кузова имели «самолетные очертания», они отделывались алюминием и древесным шпоном.
   Автомобили приобрели удлиненный силуэт, в салон можно было входить, не сгибаясь. Ход был плавный и бесшумный, сиденья удобные. На автомобилях стали устанавливать электрический стартер, указатели поворота, стеклоочистители, усилители тормозов, автоматические трансмиссии.
   Наряду с фешенебельными машинами, которые выпускали ныне забытые фирмы, такие как «Испано – Сюиза» и «Бугатти», небольшие фирмы наладили производство 2–3-местных дешевых автомобилей. На них устанавливались мотоциклетные двигатели, ременной или цепной привод, фанерные или брезентовые кузова. Такие автомобили выпускали во Франции «Ситроен» и «Пежо», в Германии «Опель» и «БМВ», в Италии ФИАТ. Простым и дешевым автомобилям сопутствовал успех.
   В начале 1920-х годов немцы П. Ярай и Э. Румплер провели испытания моделей автомобилей в аэродинамической трубе. Это привело к появлению автомобильных кузовов обтекаемой формы, распространенных в 30-е годы прошлого века.
   Немецкая фирма ДКВ первой наладила выпуск переднеприводных автомобилей. Двигатель был установлен поперек оси машины, что улучшило сцепление передних колес с дорогой, сделало капот и весь автомобиль более коротким. Двигатель был двухтактный.
   В 30-е годы прошлого века бурно развивалось строительство грузовиков и автобусов. Условия работы водителей этих машин улучшилось, благодаря применению пневматических шин, закрытых кабин и электрического освещения.
   На большегрузных автомобилях и автобусах стали устанавливать дизельные двигатели. Кабины грузовиков сместились вперед, что позволило рационально использовать длину машины. В то время появились городские автобусы вагонного типа. В них двигатель устанавливался рядом с сиденьем водителя под кузовом или сзади. Это позволило разместить пассажирский салон практически по всей длине машины.
   В 30–40-е годы XX века окончательно сложились основные узлы автомобилей, их компоновка. Они сохранились и до наших дней. Несмотря на применение новых материалов и внедрение компьютеров в управление автомобилей, суть их осталась неизменной и в начале XXI века.

Антибиотики

   Те, кто бывал в Европе, вероятно, обращали внимание на памятники жертвам чумы, стоящие на центральных площадях таких крупных городов, как, например, Вена. Они – красноречивое напоминание живущим о тех страшных эпидемиях, которые всего несколько столетий назад буквально опустошали Европу. Известно ли читателю о том, что в XVI в. средняя продолжительность жизни человека составляла около 30 лет, в XIX в. и даже в начале XX в. (всего-то 100 лет назад) человек запросто мог умереть от незначительной раны или от обычного гриппа?
   Во все времена эпидемии были самым страшным бедствием человечества. Тихим, коварным, смертельным. «Труднее всего победить врага, которого не видишь», – утверждали древние. Так и здесь: ну как можно сражаться с тем, кто в миллионы раз меньше тебя? Его не видно и не слышно, его нельзя потрогать, у него нет ни вкуса, ни запаха, ни цвета. Враг подкрадывался незаметно и убивал беззвучно…
   Так было во все времена. Ученые подсчитали: от чумы, холеры, оспы погибло больше людей, чем во всех войнах! Древнегреческий историк Фукидид, описывая Пелопоннесскую войну между Афинами и Спартой, рассказал про «афинский мор» – страшную эпидемию чумы. В библейские времена чума и другие инфекционные заболевания представляли грозную опасность. Так, широко цитировалось повеление Божье из Второзакония: «…не ешьте из жующих жвачку <…> верблюда, зайца и тушканчика: потому что <…> нечисты они для вас: не ешьте мяса их и к трупам их не прикасайтесь». Однако мало кто знает, что в этом запрете – забота о людях, запрет был направлен на предотвращение элементарного и трансмиссивного заражения чумой. Другой библейский запрет гласил: «не ешьте <…> и свиньи, потому, что<…> нечиста она для вас» и был связан с профилактикой трихинеллеза – не менее страшного инфекционного заболевания.
   Чума и другие инфекционные заболевания свирепствовали в Европе, в Японии, на Ближнем Востоке. Свирепствовали они и в Украине и России. Кровохарканию предшествовала острая боль в груди, затем следовали жар, обильный пот, озноб. Через три дня наступала смерть. Смертность была ужасающе высокой: мертвых не успевали хоронить, в одну могилу закапывали 5–10 трупов – вымирали целые города. Вот подлинные слова историка об эпидемии того времени: «[Мрут] бо старыя и молодыя люди, и чернцы и черницы, мужи и жены и малыя детки, не бе бо их где погребати, все могиле вскопано бяше; а где место вскопают или мужу или жене, и ту с ним положат малых деток, семеро или осмеро голов в един гроб».
   Трудно себе даже представить ужас этих повальных эпидемий, как трудно представить, что еще в начале XX в., когда братья Райт уже взлетели в воздух, а Альберт Эйнштейн работал над теорией относительности, врачи лечили больных кровопусканием, порошками из высушенных земноводных и заклинаниями. А во время Первой мировой войны врачи оказались бессильны в борьбе с инфицированием ран и ожогов: при незначительных ранениях вынуждены были ампутировать руки и ноги. Сегодня, когда в любой аптеке можно купить эффективное средство от гриппа, а сама эта болезнь представляет нам лишь небольшое неудобство, отвлекающее от работы или учебы, трудно поверить, что в конце XIX в. грипп считался смертельно опасным заболеванием и уносил сотни тысяч жизней.
   Человечество всегда пыталось бороться с инфекционными болезнями, но лишь с открытием бактерий и вирусов человек наконец-то понял, кто является его злейшим врагом и благодаря микроскопу смог увидеть его «лицо». Вероятнее всего, человечество проиграло бы битву с микроскопическими убийцами (а многие из нас попросту не родились бы на свет, так как наши родители, возможно, тоже не родились бы на свет или же умерли в младенчестве), если бы не Божье озарение, снизошедшее на шотландского ученого, открытие которого изменило весь ход истории.
   Александр Флеминг появился на свет 6 августа 1881 г. восьмым ребенком в семье фермера. В пять лет Алек пошел в школу. Путь длиною в одну милю среди вересковых пустошей. Флеминг вспоминал, что в сильные морозы мать давала каждому ребенку по две горячие картофелины, чтобы по дороге дети могли согревать руки, а придя в школу, поесть их. Флеминг всю жизнь утверждал, что ему крупно повезло, поскольку самую важную роль в его образовании сыграла именно эта маленькая шотландская школа и ежедневные прогулки туда и обратно.
   В 1908 г. он выдержал вступительные экзамены в университет, работал в бактериологической лаборатории. Флеминг занялся поиском вещества, способного убить микробы. Первым его открытием был лизоцим. Лизоцим – антисептик, присутствующий в человеческом организме. Например, слезы, которые содержат лизоцим, являются прекрасным антибактериальным средством, они естественным образом защищают наши глаза от заражения микробами. Кстати, именно опыты со слезной жидкостью помогли Флемингу в открытии лизоцима. Один из его коллег вспоминал: «Мы срезали с лимона цедру, выжимали ее себе в глаза, потом пипеткой набирали слезную жидкость и переливали ее в пробирку». Вот тот мучительный опыт, посредством которого было определено, что в слезах содержится вещество, способное удивительно быстро убивать некоторые микробы. И сейчас широко используется открытое Флемингом вещество: лизоцим незаменим для предохранения продуктов питания от гниения. Кроме того, его широко применяют для лечения кишечных и глазных инфекций. И все же лизоцим был бессилен против серьезных болезнетворных микробов.
   Флеминг продолжает работать. К сожалению, многие забывают, что каждое открытие – это годы, а то и десятки лет напряженной, изматывающей работы. Флеминг трудился неистово по 16 часов в сутки. Современники сравнивали его с Галилео Галилем и Джордано Бруно, ради истины пожертвовавшими жизнями. Флеминг готов был на все. Лишь в 1928 году он, еще не подозревая об этом, вплотную приблизился к главному открытию своей жизни. А произошло это так. В отличие от своих коллег, мывших чашки с бактериальными культурами после окончания работы, Александр не мыл посуду с остатками культуры по две– три недели, пока его лабораторный стол не загромождали 40 или 50 чашек, и лишь тогда принимался за уборку. Не удивительно, что, делая уборку, он заметил – остатки культур были покрыты пушистой, словно шерстка котенка, плесенью. Но вместо того чтобы выбросить заплесневелые культуры, Флеминг начал внимательно их изучать. Он заметил, что колонии стафилококка вокруг плесени растворились и вместо желтой мутной массы в чашке появились капли, напоминавшие росу. Это явление сильно заинтересовало Флеминга.
   Теперь необходимо было определить вид плесени. Занявшись исследованием, Флеминг установил, что его чудодейственная плесень относится к виду «Pénicillium Notatum», виду, который был впервые открыт на сгнившем иссопе (полукустарниковом растении, содержащем эфирные масла). Осознав это, Флеминг, как глубоко верующий человек, воскликнул: «Окропи меня иссопом, и буду чист» (50-й псалом Библии). Таково было первое в истории медицины упоминание о пенициллине. Во время Второй мировой войны чудодейственную плесень, антисептические свойства которой теперь не вызывали сомнений, необходимо было спасти от бомбардировок. Ради этого Флеминг и еще двое ученых из Оксфорда пропитали коричневой жидкостью подкладку своих пиджаков. Если спасется хоть один из них, он сохранит на себе споры пенициллиновой плесени и сможет вырастить новые культуры. Уже в 1943 г. американские фармацевтические компании начали производство пенициллина, и Министерство обороны дало заказ на выпуск ста двадцати миллионов единиц препарата.
   Раненым перед и после операции кололи пенициллин, после чего у большинства раны рубцевались без воспалительных осложнений и нагноений. Пенициллин показался видавшим виды полевым хирургам настоящим чудом. Вскоре весь мир заговорил о чудодейственном препарате. Действительно, пенициллин спасал безнадежных больных. За всю историю человечества не было в мире лекарства, которое спасло столько жизней. Открытие пенициллина, а затем и других антибиотиков произвело настоящую революцию в медицине: пенициллин победил самые злые инфекции, увеличив тем самым среднюю продолжительность человеческой жизни на тридцать пять лет – с сорока в XVIII в. до семидесяти пяти в конце XX. Сегодня, принимая назначенные врачом таблетки бисептола или получая укол пенициллина, к сожалению, мало кто задумывается, кому мы обязаны открытием антибиотиков и что было бы с нами, если бы антибиотиков не существовало.
   Но пожалуй, самое удивительное в этой истории то, что ни другие ученые, ни сам Флеминг не смогли объяснить, каким же образом обстоятельства сложились так, что в чашках с культурами оказались споры пенициллиновой плесени? А дело вот в чем. Споры плесени пенициллина, с которой Флеминг столкнулся впервые в своей лаборатории, вероятнее всего, залетели через окно. Ведь плесень, которой оказалась заражена культура, относится к очень редкому виду Pénicillium (из тысяч известных плесеней лишь одна содержит пенициллин), и чудесным образом именно она попала в лабораторию. Флеминг оставил чашку с плесенью на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а начавшееся затем потепление – для бактерий. Если бы не перепад температур, Флеминг, возможно, так никогда и не сделал бы своего знаменитого открытия. Но это еще не все. Великое открытие так и осталось бы «лежать на полке» не востребованным, если бы не еще одна счастливая случайность: ученый Чейн случайно столкнулся в коридоре с медсестрой, которая несла бутылки с мутновато-зеленой жидкостью. Это была «плесень Флеминга», которой никто не занимался. Заинтересовавшись, Чейн попросил подарить ему бутылки – и начал проводить опыты, стараясь выделить чистый пенициллин.
   До конца своей жизни Флеминг усматривал в этом невероятном стечении обстоятельств руку Провидения, которое позволило появиться на свет величайшему открытию, спасшему миллиарды жизней и подарившему каждому человеку пять лет жизни. Александр Флеминг никогда не считал изобретение пенициллина своей заслугой, полагая, что он лишь случайно получил в дар от Бога то, что Бог сотворил сам. Впрочем, как отмечал Пастер, судьба одаривает только подготовленные к такому дару умы.
   В 1945 году Флеминг, Чейн и Флори удостоились звания лауреатов Нобелевской премии в области медицины. Это произошло именно тогда, когда завершилась Мировая война, во время которой пенициллин спас жизни миллионов людей. В последние годы жизни Флеминг был удостоен рыцарского звания, 25 почетных степеней, 26 медалей, 18 премий, 13 наград и почетного членства в 89 академиях наук и научных обществах. Но слава не вскружила ему голову. До конца своей жизни Флеминг оставался простым, скромным и веселым человеком. На его могильном памятнике нет пышной эпитафии. Только имя и два слова: «Сэр Александр Флеминг – изобретатель пенициллина».
   Пенициллин так и остался не запатентованным. Ученые, получившие за открытие одну Нобелевскую премию на троих, отказались патентовать препарат. Они считали, что средство, которое может спасти человечество, не должно служить источником легкого обогащения. Вероятно, это единственное открытие такого масштаба, на которое никто и никогда не предъявлял авторских прав.

Артиллерия

   Считается, что огнеметное оружие проникло в Европу с Востока, предположительно из Индии и Китая через арабов и византийцев в I-м тысячелетии н. э. Начало Il-го тысячелетия ознаменовалось повсеместным распространением и применением огнестрельных орудий в сражениях и при осаде городов.
   Стволы первых «пушек» делались из кованых железных полос. Их либо сваривали при помощи кузнечной сварки, либо сворачивали железный лист вокруг стержня с последующей проковкой по шву. Дном служил конусообразный кусок железа, вбиваемый в ствол в разогретом состоянии. Стволы вкладывались в деревянную колоду (сруб) и скреплялись с ней металлическими обручами (обоймами).
   Эти орудия не имели прицельных приспособлений для наводки. Прицеливание производилось путем наведения ствола на цель. Для производства выстрела поджигали пороховой заряд через специальное отверстие в казенной части при помощи раскаленного прута или тлеющего фитиля.
   В качестве снарядов применялись каменные, железные и свинцовые, позже – чугунные ядра, куски железа, а также дроб-картечь.
   С развитием литейного дела стали отливать цельные стволы из меди и бронзы. Это позволило облегчить орудия, улучшить их баллистические свойства и обеспечило однотипность снарядов. Стволы устанавливали на колесный лафет, что резко повысило подвижность артиллерии. Были введены прицельные приспособления – прорези и мушки, это упростило наводку и сделало ее более точной. Для придания углового возвышения применялся клин, служивший подъемным механизмом.
   И тут родилась идея увеличить скорострельность. Первоначально эта проблема решалась путем создания многоствольных орудий. Появились «сороки» – орудия, имевшие 7 стволов калибром 18 мм, «органы» – 4–5 рядов стволов на вращающемся барабане по пять 61-миллиметровых мортирок в каждом ряду.
   В XVI в. из-за отсутствия унифицированной системы изготовления орудий существовало множество разных образцов и калибров. Но постепенно сложилась строгая классификация орудий по принципу их устройства и характеру боевого применения. Так, в русской армии существовала следующая классификация:
   – пищали, служившие для настильной стрельбы. Они имели калибр от 38 до 219 мм, массу от 3,5 до 450 пудов. Дальность стрельбы 400–800 м;
   – пушки верховые – прототипы мортир. Их калибр достигал 300–600 мм, они имели незначительную длину, масса – от 1,5 до 80 пудов. Предназначались для навесной стрельбы и разрушения городских построек при осаде города;
   – тюфяки – орудия небольшого калибра (до 90 мм); стреляли картечью на расстояние 150–200 м;
   – гафуницы (гаубицы), стрелявшие «каменным дробом». Они могли вести и навесной огонь ядрами.
   В XVI–XVII веках зародились основы артиллерийской науки. Это стало возможным благодаря исследованиям Тартальи, Гартмана и других ученых.
   В то время применялись сплошные, разрывные, зажигательные, осветительные снаряды. Сплошные – каменные, железные чугунные и свинцовые ядра, картечь. Разрывные, напоминающие бомбы и гранаты, стали предшественниками снарядов осколочного действия.
   Применение зернистого пороха вместо пороховой «мякоти» позволило увеличить заряды и повысить скорострельность. Были введены картузы-мешочки из плотной ткани для порохового заряда. Они упростили и ускорили заряжание.
   В начале XVII в. у полевых и осадных орудий имелся тяжелый деревянный лафет, который закреплялся на двухколесном передке.
   В России в 60-е годы XVII в. впервые появились нарезные орудия. Они были казнозарядными с поршневым затвором. В странах Западной Европы такие орудия появились примерно на 40 лет позже.
   В конце XVII – начале XVIII века ведущие позиции в артиллерии занимала Швеция. Благодаря голландцу Луи де Гееру, организовавшему в стране доменное производство по новой технологии, шведская армия была вооружена легкими чугунными пушками, которые везли за армией, что обеспечивало огневое превосходство над противником.
   Уже в начале XVIII в. пушкари при стрельбе пользовались таблицами. После первого произвольного выстрела определялась дальность точки падения снаряда и разница с табличными данными. Затем рассчитанную поправку вводили для уточнения наведения на цель.
   В 1700–1721 гг. Россия вела войну со Швецией. Она получила название «Северная». Сначала преимущество шведской артиллерии обусловило победу под Нарвой над русскими войсками. Потом Петр I провел ряд преобразований в артиллерии, что позволило добиться перелома в войне. В 1708 г. шведский король Карл XII вторгся в пределы России. В ходе генерального сражения под Полтавой решающую роль сыграло преимущество русской армии в орудиях.
   Позже Петр I устранил многокалиберность и многосистемность орудий, оставив на вооружении всего 12 образцов пушек, гаубиц и мортир. Для достижения единообразия при производстве орудий была введена единая система измерений – русская артиллерийская шкала и русский артиллерийский фунт, с помощью которых определяли калибр орудий и вес снарядов. На артиллерийские заводы были разосланы чертежи стволов с требованием, чтобы производимые орудия были однотипны. За счет улучшения конструкции была уменьшена масса орудий.
   Были усовершенствованы прицельные приспособления, благодаря чему наводка орудий стала более точной. В вертикальной плоскости она осуществлялась при помощи квадранта, дугового прицела и деревянного клина, а в горизонтальной – простым перемещением орудия. Некоторые пушки имели на дульной части мушку, а на казенной – целик. В Западной Европе подобные преобразования были проведены позже – лишь во второй половине XVIII века.
   В 1741 г. русский мастер А. К. Нартов сконструировал скорострельную батарею, состоявшую из 44 мортирок, расположенных на подвижном горизонтальном круге. Нартову также принадлежит прибор для наведения орудий в цель. Это была шкала, нарезанная в градусах, прикрепленная к металлическому подъемному винту.
   Важнейшим нововведением в области материальной части орудий стало принятие на вооружение новой артиллерийской системы под названием «единорог», сконструированной в 1757 г. офицерами Даниловым и Мартыновым. Это была гаубица с длиной ствола 8–11 калибра, позволявшая вести настильную и навесную стрельбу всеми видами снарядов. Орудия имели калибр от 76 до 245 мм, их масса была в 2 раза меньше, чем у старых систем. Практическая дальность стрельбы достигала 1,5–2 км, а некоторых – до 5 км. «Единороги» были удобны в обращении, отличались огневой мощью и скорострельностью. Подъемный механизм состоял из вертикального винта и неподвижной гайки. В качестве прицелов вместо прорези с мушкой применялся диоптр, что повышало качество наводки.
   «Единорог» был гораздо совершеннее старых артсистем. Его позаимствовали страны Западной Европы, он состоял на вооружении почти 100 лет.
   В конце XVIII – начале XIX века совершенствовалась организация артиллерии. Ее стали концентрировать на важнейших направлениях, применялся новый огневой маневр – стрельба через голову своих войск.
   Толчком к развитию артиллерии стали войны наполеоновской Франции. Сам Наполеон, в прошлом офицер-артиллерист, умело применял артиллерию и своими победами во многом обязан этому роду войск.
   В битве при Бородино важную роль играла артиллерия обеих воюющих сторон. Русская армия имела небольшое количественное и качественное преимущество перед французами. Кутузов умело маневрировал своими артиллерийскими резервами.
   В первой половине XIX в. была создана горная артиллерия, изобретены боевые ракеты – прообраз современной реактивной артиллерии.
   Во второй половине XIX в. произошел качественный рывок в развитии артиллерии: появились нарезные орудия. Первые образцы нарезных бронзовых орудий, заряжавшихся с дула, были приняты на вооружение в 1857 г. во Франции, в России – в 1858 г. В 60-е годы XIX в. на вооружение были приняты нарезные пушки, заряжавшиеся с казенной части. К ним прилагались продолговатые снаряды со свинцовыми ведущими частями. Сами пушки уже делались из стали.
   Переход к нарезной артиллерии способствовал увеличению дальности стрельбы в 2–2,5 раза и точности – более чем в 5 раз. Теперь можно было буквально расстреливать боевые порядки противника.
   В 70–80-е годы XIX в. все развитые государства Европы перевооружили свои армии дальнобойной стальной артиллерией. Русский изобретатель Барановский создал 2,5-дюймовую скорострельную пушку с унитарным патроном. В 1884 г. француз Вьель изобрел медленно горящий бездымный порох, что ускорило развитие скорострельной артиллерии.
   Русско-японская война 1904–1905 гг. доказала преимущество скорострельной артиллерии. Благодаря применению угломера и панорамы, русские артиллеристы впервые стреляли с закрытых позиций. В ходе этой войны капитан Гобято создал новый вид артиллерийского оружия – миномет. Он предназначался для поражения живой силы противника, которая пряталась за укрытиями.
   Для пробивания бронированных сооружений адмирал С. О. Макаров предложил конструкцию бронебойных снарядов с баллистическим наконечником из тигльной и хромистой стали.
   Уже после Русско-японской войны стала развиваться измерительная и наблюдательная техника. В 1909 г. в России была создана первая звукометрическая станция.
   К началу Первой мировой войны артиллерия основных воюющих государств насчитывала свыше 26 000 орудий и подразделялась на полевую легкую, конную, горную, полевую тяжелую и тяжелую осадную. Кроме того, в германской армии на вооружении уже было около 160 минометов.
   В ходе войны во всех армиях обнаружилось предпочтение гаубичной и тяжелой артиллерии. Это было связано с позиционным характером войны и необходимостью поражать закрытые цели. Зародилась артиллерия сопровождения пехоты, в которую входили легкие пушки (калибр – 45 мм), гранатометы и минометы. Минометов становилось все больше и больше.
   Быстрое развитие авиации привело к появлению зенитной артиллерии. В 1918 г. в армиях воюющих стран насчитывалось 4200 зениток. Применение танков привело к созданию противотанковой артиллерии.
   Шрапнель – основной снаряд довоенной артиллерии, был заменен гранатой. Появилось много специальных снарядов – зажигательные, химические, дымовые, пристрелочные.
   Возникли и новые подходы к управлению артиллерийским огнем, более точные методы расчета данных для стрельбы, новый вид огня – заградительный, а также огневой вал как способ сопровождения пехоты. Для повышения подвижности применяется механическая тяга.
   В 1920–1930-е годы была полностью обновлена материальная часть, вводились новые орудия: гаубицы-пушки, новые марки пороха, снарядов. Артиллерия переводилась на механическую тягу, испытывались первые образцы самоходной артиллерии.
   Но увлечение перспективами воздушной и танковой войн привело к недооценке роли артиллерии в США, Франции и Англии. В Германии на вооружении стояли в основном модернизированные орудия времен Первой мировой войны.
   Наиболее полно вопросы боевого применения артиллерии в 20–30-е годы XX в. были отработаны в Советском Союзе. В созданной советскими военными теоретиками «теории глубокой операции» артиллерия во взаимодействии с другими родами войск должна была взламывать оборону противника, сопровождать огнем наступающие войска, вести борьбу с танками и авиацией противника. Это выразил И. В. Сталин в 1940 г. крылатой фразой «Артиллерия – бог войны».
   На вооружение были приняты осколочно-фугасные, фугасные, бронебойные, бетонобойные, дымовые, зажигательные снаряды. Перед самой войной в СССР была создана реактивная артиллерия – знаменитые «катюши».
   Вторая мировая война способствовала всестороннему развитию артиллерии, особенно новых ее видов – зенитной, противотанковой, реактивной и самоходной. В ходе войны выявилась неспособность танков и авиации осуществлять прорыв хорошо укрепленной обороны без поддержки артиллерии. Это вызвало увеличение артиллерийского парка во всех воюющих странах.
   Наша армия перешла к новым формам артиллерийского обеспечения боя – артиллерийскому наступлению, включавшему артподготовку, поддержку пехоты и сопровождение боя пехоты и танков. К концу Второй мировой войны артиллерия была переведена в основном на механическую тягу, что повысило ее подвижность.
   Во второй половине XX в. происходит качественное усиление роли артиллерии. Возросла дальность, точность стрельбы, мощность снарядов. В артиллерии применяются усовершенствованные системы оптической, звуковой и радиолокационной разведки, приборы управления огнем. Были разработаны активнореактивные снаряды, боеприпасы кассетного типа, различные виды химических боеприпасов, ядерные боеприпасы.
   Артиллерия остается на вооружении всех развитых стран мира.

Атомная бомба

   В 1896 г. французский физикА. Беккерель открыл испускаемое ураном неизвестное проникающее излучение, которое назвал «радиоактивным». Вскоре была обнаружена радиоактивность другого химического элемента – тория. В 1897 г. англичанин Дж. Томсон, будущий лорд Кельвин, изучая катодные лучи в разрядной трубке, пришел к выводу, что это – поток отрицательных электронов. Томсон измерил отношение заряда электрона к его массе, а затем и заряд частицы.
   В 1898 г. супруги Кюри открыли два новых радиоактивных элемента – полоний и радий. Кюри, а также ученик Томсона Э. Резерфорд установили наличие трех видов излучения радиоактивных элементов – α-, β-, γ-лучи. β-лучи имели отрицательный заряд и оказались открытыми Томсоном электронами. В 1903 г. Резерфорд и Ф. Содди обнаружили, что испускание α-лучей сопровождается превращением химических элементов, например радия в радон.
   В 1917 г. Резерфорд открыл положительно заряженную частицу, оказавшуюся ядром атома водорода. Ее назвали протоном. Масса протона – в 2000 раз больше массы электрона.
   С 1919 г. физики-экспериментаторы изучали ядра элементов, бомбардируя их α-частицами (ядрами гелия) и протонами. При обстреле ядра попавшая в него частица меняла заряд ядра и атомный вес, т. е. превращала один элемент в другой. Впервые это сделал Резерфорд, получив при обстреле ядер азота α-частицами ядра кислорода.
   В 1932 г. английский физик Дж. Чедвик доказал, что при бомбардировке бериллия α-частицами появляются новые элементарные частицы (нейтроны), которые, как указывал в то время советский физик Д. Иваненко, вместе с протонами (ядрами атомов водорода) составляют атомное ядро (до этого предполагали, что атом состоит лишь из протонов и электронов). Нейтрон не имеет электрического заряда, поэтому его было трудно обнаружить.
   Тогда же английские ученые Дж. Кокрофт и Э. Уолтон осуществили первую ядерную реакцию посредством искусственного ускорения движения протонов. В начале 1934 г. супруги Фредерик и Ирен Жолио-Кюри доложили Французской академии наук об открытии искусственной радиоактивности при бомбардировке пластины алюминия α-частицами, испускаемыми радиоактивным препаратом. Атомы алюминия при этом превращались в атомы фосфора, но не обычные, а радиоактивные, которые, в свою очередь, превращались в устойчивый изотоп кремния. Одновременно с супругами Жолио-Кюри итальянский ученый Э. Ферми наблюдал искусственную радиоактивность, вызванную бомбардировкой нейтронами ряда элементов. После первых опытов были обнаружены искусственные радиоактивные изотопы многих химических элементов. В 1940 г. было открыто более 200 искусственных радиоактивных изотопов.
   После открытия искусственной радиоактивности ученые всего мира начали интенсивно изучать элементарные частицы и ядерные реакции. В 30-е годы XX в. были заложены принципиальные основы новой отрасли техники. Важную роль сыграло изучение процесса ядерных цепных реакций.
   В 1939 г. немецкие ученые О. Ган и Ф. Штрасман сообщили об открытии нового явления – деления атомных ядер урана под действием медленных нейтронов. Вскоре было установлено, что это деление происходит по закону цепной реакции. Нейтроны, попадая в ядра урана с атомным весом 235, не только разрушали их, но при определенных условиях вызывали появление новых нейтронов. Те, в свою очередь, разрушали последующие ядра урана и таким образом обеспечивали цепную реакцию, идущую с выделением колоссальной энергии. Среди конечных элементов облучения ученые обнаружили барий и молибден. Так было установлено, что ядро урана раскалывается на более легкие ядра. Этот процесс назвали расщеплением ядра. Позже он получил название «деление».
   Опыты Ф. Жолио-Кюри показали, что при делении урана выделяется громадное количество энергии. Осколки ядер урана были обнаружены на расстоянии 3 мм от места их деления, что свидетельствовало о ядерном взрыве.
   В 1940 г. советские ученые Г. Флеров и К. Петржак открыли самопроизвольное деление урана.
   В декабре 1942 г. в Чикагском университете Э. Ферми впервые удалось осуществить ядерную цепную реакцию в первом ядерном реакторе с графитовым замедлителем нейтронов и естественным ураном-235. Технология производства урана-235 была крайне сложна, ибо в общей массе естественного урана этот изотоп составляет лишь 0,72 %, а остальное приходится на уран с атомным весом 238 (99,2 %) и отчасти – 234. Разница между изотопами урана в том, что уран-238 в отличие от урана-235 не делится медленными или, как их еще называют, тепловыми нейтронами. Он поглощает эти частицы, как и быстрые нейтроны, не успевшие отдать свою энергию в процессе замедления.
   В связи с этим возникла проблема разделения двух изотопов урана.
   В США был разработан так называемый «Манхэттенский проект». Этот проект ознаменовал создание атомного оружия. В проекте принимали участие выдающиеся европейские ученые, которые, спасаясь от фашистов, эмигрировали в Америку. Среди них были А. Эйнштейн, Э. Ферми и др.
   Первое практическое использование неконтролируемой ядерной реакции было осуществлено в рамках «Манхэттенского проекта» 16 июля 1945 г., когда в штате Нью-Мексико была взорвана опытная атомная бомба.
   6 августа 1945 г. на японский город Хиросима американцы сбросили первую атомную бомбу «Малыш» с урановым зарядом. 9 августа атомной бомбардировке подвергся другой японский город, Нагасаки. Он пострадал от взрыва «Толстяка» с зарядом из плутония – трансуранового элемента, синтезированного в 1941 г. группой американских ученых под руководством Г. Сиборга. Мощность обоих взрывов равнялась примерно 20 килотоннам в тротиловом эквиваленте.
   В Хиросиме в результате взрыва погибло свыше 140 тысяч человек, в Нагасаки – около 75 тысяч человек. Тысячи людей получили большие дозы радиоактивного облучения и заболели лучевой болезнью.
   Ядерный взрыв характеризуется пятью поражающими факторами. Ударная волна воздействует на все объекты, встречающиеся на ее пути, разрушая здания в радиусе нескольких километров от эпицентра взрыва; световое излучение оплавляет, деформирует и воспламеняет материалы и вызывает у людей ожоги различной степени тяжести в зависимости от расстояния до эпицентра; после взрыва в течение 10–15 секунд возникает поток гамма-излучения и нейтронов – проникающая радиация (она-то и вызывает возникновение лучевой болезни); подобное воздействие имеет и радиоактивное заражение местности: оно происходит в результате выпадения радиоактивных веществ из облака ядерного взрыва и радиации, обусловленной образованием радиоактивных изотопов под воздействием нейтронного и гамма-излучения. В отличие от проникающей радиации, радиоактивное заражение местности сохраняется на протяжении длительного времени; последним поражающим фактором является электромагнитный импульс, воздействующий на антенны, провода, средства связи – в них наводится электрическое напряжение, повреждающее эти устройства.
   США пытались использовать монополию на ядерное оружие, чтобы диктовать условия другим странам. Над разработкой атомной бомбы в Советском Союзе работала группа ученых под руководством И. В. Курчатова. Результатом их работы стал произведенный в 1949 г. в СССР атомный взрыв.
   В США ускорили работы над термоядерной (водородной) бомбой. Взрыв ядерного заряда в бомбе вызывает термоядерную реакцию, подобную происходящей на Солнце и других звездах. Водород в звездных недрах постоянно находится под воздействием высочайших температур, что способствует превращению его в другой элемент – гелий – с выделением огромного количества энергии. О выделяющейся при реакциях энергии можно судить по следующим цифрам: при синтезе 1 кг тяжелого водорода (дейтерия) выделяется такая же энергия, как и при сжигании 8–12 т каменного угля.
   1 ноября 1952 г. на атолле Эниветок американцы взорвали термоядерное устройство мощностью 3 мегатонны. 12 августа 1953 г. в Советском Союзе на Семипалатинском полигоне была взорвана водородная бомба. В 1954 г. американцы провели новое испытание водородной бомбы на атолле Бикини.
   В 50–60 гг. прошлого века ядерные боеприпасы были созданы и испытаны в Великобритании (в 1952 г.), Франции (в 1960 г.), Китае (в 1964 г.). Термоядерное оружие появилось в Великобритании в 1957 г., в Китае в 1967 г., во Франции в 1968 г. Мощность термоядерного заряда может достигать 20 и более мегатонн.
   В 1950–1960 годы появились совершенные средства доставки ядерных боеприпасов к цели. Это ракеты, базирующиеся в шахтах на передвижных ракетных установках, расположенных на автомобилях и железнодорожных платформах. Помимо того, ядерными ракетами вооружены стратегические атомные подводные лодки. Атомные и термоядерные заряды также могут доставляться стратегическими бомбардировщиками.
   Начиная с 50-х годов прошлого века страны, имевшие ядерное оружие, проводили испытания этого оружия на специальных полигонах. Цель – совершенствование этого смертоносного оружия. Испытания были наземными, воздушными, подводными и подземными. В 1963 г. вступил в силу договор о запрещении всех видов испытаний, кроме подземных.
   В 1960–1970-е годы начались переговоры глав великих держав об ограничении ядерного вооружения и предупреждения возможных конфликтов с применением ядерного оружия. Делались попытки предотвратить его распространение в другие страны. Но наряду с этим, разрабатывались новые виды оружия. В качестве примера можно привести нейтронную бомбу, уничтожающую все живое, но оставляющую в целости здания. Совершенствовались средства доставки боеприпасов.
   Атомное оружие разработали в Израиле, Индии, Пакистане и, по некоторым данным, в Северной Корее.
   Как это ни парадоксально, но большинство исследователей признают, что именно ядерное оружие стало фактором, сдерживающим развитие конфликтов между крупными государствами во второй половине XX в. Угроза взаимного уничтожения заставляла противоборствующие стороны садиться за стол переговоров. В качестве примера можно привести мирное разрешение Карибского кризиса в 1962 г. Причиной его возникновения стало размещение в Турции американских ракет, нацеленных на СССР, в ответ СССР разместил свои ракеты на Кубе.

Атомная электростанция

   При сгорании ядерного топлива в урановом реакторе выделяется в 10 000 000 раз больше энергии, чем при сгорании равной по весу порции органического вещества в топке обычной тепловой электростанции.
   Условием работы атомного реактора, утверждал ученый, является цепная реакция деления ядра урана, для чего следует обстреливать уран-235 нейтронами. Последние, взаимодействуя с атомами урана, вызывают деление их ядер. Деление одного ядра, в свою очередь, вызывает деление других. При этом происходит выделение нейтронов. Для обеспечения самоподдерживающейся цепной реакции необходимо такое количество урана, критическая масса которого была бы около 50 кг.
   Уменьшить критическую массу можно, смешав уран с каким-либо неделящимся веществом. Принцип работы реактора был открыт Э. Ферми. В 1934 г. он вместе со своими сотрудниками Б. Понтекорво и Амальди исследовал радиоактивность различных элементов. Образцы представляли собой пустотелые цилиндры со вставленными в них источниками нейтронов. При облучении материала цилиндра нейтронами образовывались радиоактивные ядра. В ходе экспериментов было обнаружено, что активность материала зависит от предметов, стоящих вблизи цилиндра. Наибольшая радиоактивность была достигнута при погружении цилиндра в бассейн с водой. Ферми объяснил это тем, что, сталкиваясь с почти равными по весу атомами водорода, нейтрон теряет большую часть своей энергии. Его скорость равна примерно 2000 м/с. Такие нейтроны называют медленными, а нейтроны, образующиеся при делении и имеющие скорость 20 000 км/с, – быстрыми.
   Снижение скорости нейтронов позволяет увеличить количество нейтронов, взаимодействующих с ядрами, а следовательно, и число делящихся ядер. Открытие Ферми позволило построить реактор, в котором происходило удержание достаточного количества нейтронов, рождающихся при делении.
   Работы по созданию ядерного реактора велись в начале 40-х годов прошлого века в Германии, США и СССР.
   Немецкие ученые, спеша создать атомную бомбу, построили в подземной лаборатории Хайгерлох реактор, в котором в качестве замедлителя применялась «тяжелая вода» – соединение кислорода с дейтерием – тяжелым изотопом водорода. Не хватало критической массы: для осуществления самоподдерживающейся цепной реакции необходимо 1,5 тонны урана и 2 тонны тяжелой воды. В Норвегии в это же время был выведен из строя завод по производству тяжелой воды.
   В 1942 г. в Чикагском университете был запущен ядерный реактор, в котором в качестве замедлителя использовался особо чистый графит. В 1946 г. реактор такого же типа был запущен в СССР. Оба реактора гетерогенного типа: в них уран был собран в блоки-стержни, между которыми размещались блоки графита. Благодаря такой конструкции быстрые нейтроны замедляются в блоках графита, не поглощаясь атомами урана-238. В качестве замедлителя в таких реакторах применяется тяжелая вода.
   В гомогенных реакторах горючее в виде тонкого порошка находится во взвешенном состоянии в жидком замедлителе (обычно соль урана, равномерно распределенная в тяжелой воде). Позже появились реакторы, в которых использовался расплавленный висмут, содержащий торий и небольшое количество урана-233.
   Запуск реактора осуществлялся следующим образом: вначале реактор приводят в состояние надкритичности, вводя больше урана, чем это необходимо для поддержания цепной реакции. Мощность реактора возрастает. Для ее ограничения в реактор вводят поглотитель нейтронов – бор в количестве, достаточном для поддержания критического уровня работы реактора. Для управления процессом в рабочем объеме реактора предусмотрены пустоты для поглотителя – отверстия-тоннели, проходящие через весь реактор. Мощность регулируют, погружая стержни в тоннели или выводя их.
   В 1945 г., когда атомные бомбы уже уничтожили Хиросиму и Нагасаки, крупным американским ученым задали вопрос: «Удастся ли и когда использовать атомную энергию в мирных целях?». Почти все ученые назвали одну цифру: 50 лет (1995 г.). Почему же именно этот срок называли американцы?
   Американские специалисты руководствовались не столько техническими, сколько экономическими соображениями. Они исходили из того, что атомная энергия дороже энергии, вырабатываемой тепловыми или гидроэлектростанциями. Поэтому ее производство станет экономически обоснованным только тогда, когда начнут истощаться запасы нефти.
   Эксперты ошиблись: уже в 1954 г. в СССР в Обнинске была пущена в эксплуатацию первая атомная электростанция мощностью 5 мегаватт.
   Реактор первой советской атомной электростанции работал на обогащенном естественном уране, в котором содержание урана-235 было доведено до 5 %. Реактор находился в стальном баке диаметром 3 м и высотой 4,6 м. Он был заполнен графитом, в центральной его части было 128 рабочих каналов, туда опускались стержни урановых тепловыделяющих элементов. Эти стержни были окружены длинными графитовыми цилиндрами и образовывали активную зону диаметром 150 см и высотой 170 см.
   Работа реактора начиналась лишь после того, как в него опускали более 60 стержней. Общая загрузка урана в реактор составляла 550 кг. Суточный расход урана – примерно 30 г, что эквивалентно 100 т угля. Регулировка мощности реактора осуществлялась при помощи стержней из карбида бора, активно поглощающего нейтроны. В качестве теплоносителя в первичном контуре применялась циркулирующая вода, имевшая давление 100 атм и температуру 280–290 °C.
   В теплообменнике (парогенераторе) образовывался перегретый пар с давлением 12–13 атм и температурой 260–270 °C, поступавший в турбину электростанции. Полный КПД электростанции – 17–19 %. За первые два года эксплуатации Обнинская АЭС израсходовала несколько килограммов урана. Тепловая электростанция такой же мощности сожгла бы за тот же период более 75 тыс. т угля.
   В 1956 г. в Англии в Колдер-Холле была введена в эксплуатацию АЭС промышленного назначения мощностью 46 МВт. В 1957 г. заработала первая американская АЭС мощностью 60 МВт в Шиппингпорте.
   В реакторах, работающих на быстрых нейтронах, замедлитель отсутствует, а теплоносителем обычно является жидкий металл. Цепная реакция поддерживается непосредственно быстрыми нейтронами. В таком реакторе применяется практически чистый изотоп урана-235 или искусственно полученное вторичное ядерное горючее – плутоний-239 и уран-233. Это вторичное горючее получают в таком же реакторе в ходе процесса расширенного воспроизводства горючего.
   Такие реакторы получили название бридерные, или реакторы-размножители. В 1951 г. в США был построен первый опытный бридерный реактор, ас 1953 г. развернулись работы по созданию крупного реактора такого типа.
   В Советском Союзе в 1950–1960-е годы использовались реакторы на быстрых нейтронах типа «БР-1», «БР-2», «БР-5». Определив коэффициент воспроизводства и другие физические характеристики, советские ученые спроектировали реакторы на быстрых нейтронах мощностью в 50 и 250 тыс. кВт. Промышленные АЭС на быстрых нейтронах были построены в городах Шевченко и Белоярске.
   Одной из наиболее важных задач в области атомной техники является совершенствование методов очистки и переработки тепловыделяющих элементов реактора. В процессе работы ядерного реактора свойства топлива ухудшаются. В нем накапливаются продукты деления (шлаки). Они захватывают нейтроны, уменьшая их число и препятствуя протеканию самоподдерживающейся цепной реакции. Поэтому в реакторе периодически заменяют тепловыделяющие элементы (ТВЭЛы). На специальных химических заводах они подвергаются переработке с целью удаления осколков деления и выделения накопившихся плутония и урана. Это львиная доля расходов на эксплуатацию реактора.
   Первые исследовательские реакторы с графитовым или тяжело-водным замедлителем и естественным ураном были дорогими и громоздкими. Принципиально новым шагом явилось создание водоводяных реакторов. В них замедлителем и отражателем нейтронов, а также теплоносителем и частично защитой служит обычная вода.
   Помимо описанных выше водо-водяных и графито-водных реакторов также применяются и другие виды реакторов на тепловых нейтронах. Это тяжеловодные с водяным теплоносителем и тяжелой водой в качестве замедлителя и графито-газовые, в которых в качестве теплоносителя применяется газ (гелий или углекислый газ), а в качестве замедлителя – графит. В качестве теплоносителя и охладителя могут использоваться также жидкие или расплавленные металлы: натрий, свинец, калий.
   Выбор типа реактора определяется накопленным опытом в реакторостроении, наличием необходимого оборудования и запасами сырья. В СССР строились преимущественно графито-водные и водо-водяные реакторы, в США – водо-водяные, в Великобритании – графито-газовые.
   Атомные электростанции, в зависимости от системы теплопередачи, могут иметь одно-, двух– и трехконтурные схемы. Если теплоноситель – жидкий металл, то он в особом теплообменнике отдает тепло другому теплоносителю – газу или воде, использующимся в турбинах в виде пара или горячих газов. Такая схема с промежуточным теплообменником называется двухконтурной. Ее применение позволяет ограничиться установкой биологической защиты лишь для реактора и теплообменника и исключает ее необходимость для всего теплосилового оборудования.
   Для регулирования работы реактора применяются кадмиевые стержни или стержни из бора и гафния, изменяющие величину потока нейтронов.
   Биологическая защита реактора представляет собой слой вещества, отражающего нейтроны, и защитные слои веществ (бетона, свинца, воды, серпентинового песка). Оборудование реакторного контура устанавливается в герметичных боксах. Места возможной утечки контролируются специальными системами. При авариях в системе охлаждения реактора предусматривается быстрое глушение ядерной реакции.
   В 1960-е годы в мире стремительно строились мощные АЭС, каждая из которых состояла из нескольких блоков. Кроме выработки электроэнергии на некоторых АЭС устанавливались устройства для опреснения морской воды.
   Темпы строительства атомных электростанций резко упали после аварии в 1986 г. на Чернобыльской АЭС. При разгерметизации реактора в окружающую среду было выброшено огромное количество радиоактивных веществ.
   Это вызвало дискуссии о целесообразности применения ядерной энергии, влиянии атомной энергетики на окружающую среду. Возникли проблемы с переработкой и захоронением радиоактивных отходов. Некоторые страны отказались от строительства новых АЭС и стали консервировать действующие. Но растущее потребление электроэнергии и назревающий кризис добычи энергоносителей заставляют ученых и инженеров проводить дальнейшие исследования в области атомной энергетики. Наиболее актуальным направлением является осуществление управляемой термоядерной реакции.

Бетон

   Само слово «бетон» родилось во Франции в XVIII веке. Римляне материал, подобный бетону, называли по-разному. Так, литую кладку с каменным заполнителем они именовали греческим словом «эмплектон» (emplekton). Встречается также слово «рудус» (rudus). Однако чаще всего при обозначении таких понятий, как раствор, используемый при возведении стен, сводов, фундаментов и тому подобных конструкций, в римском лексиконе употреблялось словосочетание «опус цементум» (opus caementitium), которым и стали называть римский бетон.
   Самое раннее применение бетона, обнаруженное археологами, можно отнести к 5600 г. до н. э. Найден на берегу Дуная в поселке Лапински Вир (Югославия). В одной из хижин поселения каменного века был обнаружен бетонный пол толщиной 25 см. Бетон был изготовлен из гравия и извести.
   Древнейшими вяжущими веществами, используемыми человеком, были глина и жирная земля, которые после смешивания с водой и высыхания приобретали некоторую прочность. По мере развития и усложнения строительства возрастали требования, предъявляемые к таким веществам. В Египте, Индии и Китае еще в третьем тысячелетии до н. э. начали изготавливать искусственные вяжущие вещества, такие, как гипс, позднее – известь, которые получали посредством умеренной термической обработки исходного сырья.
   Наиболее раннее применение бетона в Египте, обнаруженное в гробнице Тебесе (Теве), датируется 1950 г. до н. э. Бетон использовался при строительстве галерей египетского лабиринта и монолитного свода пирамиды Нима тоже задолго до нашей эры.
   Многие алхимики считали, что «философский» камень был известен еще в Древнем Египте, там его получали, дробя определенные камни. Французский химик Д. Давидович дробил в порошок известняк, гранит, базальт, смешивал порошок с нильским илом, водой, в качестве связующего вещества использовал сок чеснока. Полученную смесь он отливал в форму и получал искусственный камень, который трудно отличить от природного. Давидович предположил, что и блоки египетских пирамид были сделаны из такого бетона.
   В Древнем Риме бетон изготавливали, используя гашеную известь, к которой добавляли вулканическую пыль – пуццолану или кирпичную пыль. Эту смесь тщательно уплотняли. Повышению долговечности бетона способствовали и географические условия Италии с ее теплым и влажным климатом, в то время как в других странах с более суровым климатом постройки из такого же бетона сохранялись плохо. Даже сегодня не потеряли своей значимости конструктивные особенности римских бетонных дорог, полов, сводов и куполов. Не умея бороться с растягивающими и изгибными напряжениями бетонных конструкций, римляне заставили их работать на сжатие. Сочетание этих нововведений и явилось, видимо, основной причиной долговечности римского бетона.
   Появление современного бетона связано с появлением цемента. Этот материал был изобретен в 1824 г. английским каменщиком Джозефом Аспдином. Он предложил способ обжига смеси гашеной извести с глиной, в результате чего получалось порошкообразное вещество, которое при смешении с водой затвердевало на воздухе в камнеподобную массу. Аспдин назвал цемент портландским из-за внешнего сходства с серым камнем, добываемым около г. Портланда в Англии.
   Цемент в большинстве случаев применяется не в чистом виде, а в смеси с заполнителем – песком и каменным щебнем, – образуя бетон. В конце XIX в. бетон стал одним из основных строительных материалов. Необходимость строительства крупных сооружений не только на поверхности земли, но и под водою, сделала бетон, особенно в сочетании с железной арматурой (железобетон), незаменимым материалом. Он использовался для строительства мостовых быков, фундаментов зданий, массивных свай, молов, плотин, тоннелей и т. д.
   Тогда же появляется и совершенно новый строительный материал – железобетон, представляющий собой комплексное соединение, состоящее из бетонной массы и распределенного внутри нее металлического скелета, или арматуры. Идея сочетания камня и металла возникла еще в начале XIX в., но широкое применение железобетона началось лишь после создания цемента.
   Первые попытки соединить металлическую арматуру с бетоном относятся к середине XIX в. На Всемирной Парижской выставке 1855 г. французский инженер Ламбо представил лодку, корпус которой состоял из железного каркаса, залитого цементным раствором. В 1861 г. вышла книга французского ученого Коанье, где описано уже несколько конструкций из бетона с металлической сеткой. Тем не менее, изобретателем железобетона считается французский садовник Монье, применивший в 1867 г. железобетон для изготовления цветочных кадок. Стенки кадок Монье изготовлялись из цементного раствора с каркасом из металлической сетки. За первым изобретением последовали другие. В 1868 г. он получил патент на изготовление труб и резервуаров из железобетона, в 1869 г. – патент на изготовление из железобетона плоских плит, в 1877 г. – железнодорожных шпал. В 1885 г. Mонье продал право на эксплуатацию своих изобретений. С этого времени началось широкое применение железобетона в строительстве.
   Железобетон – основной строительный материал современности. К его основным достоинствам относятся прочность, жесткость, возможность получать сложные формообразования, высокие гигиенические качества (отсутствие грибка, гнили, насекомых), огнестойкость, долговечность (прочность бетона с течением времени лишь возрастает). Кроме того, бетон сопротивляется сжатию, а сталь – растяжению, бетон защищает металл от коррозии.
   Современный мир трудно представить без бетона. Дома и мосты, плотины и тоннели – далеко не полный список того, что делается из бетона. Поэтому бетон заслуживает звания настоящего философского камня.

Бумага

   Позже с этой целью стали использовать глину. Мягкая и податливая во влажном состоянии, она хорошо запечатлевала знаки, наносимые твердой заостренной палочкой, а после высушивания или обжига надежно их сохраняла. Наибольшее распространение в этом качестве глина получила в Передней Азии и Междуречье, где были найдены целые библиотеки из глиняных табличек.
   В различных районах Земли для сохранения информации использовались различные материалы: кора дерева, листья, кожа, кости, металл. На Руси долгое время наиболее распространенным носителем информации была береста – слои березовой коры.
   В древнем Египте примерно в IV в. до н. э. начали применять папирус. Его изготовляли из стеблей нильской лилии. Стебли разрезали на узкие полоски, затем складывали рядами в два слоя крест-накрест на плоской каменной плите, покрывали куском ткани и отбивали плоским камнем. Полученную пленку сушили, разглаживали и лощили. Полосы папируса имели ширину 30–40 см и длину, иногда достигавшую 40 м. На папирусе писали тушью с помощью заостренной палочки или кисти из тростника.
   Позже стали использовать письмо по воску, который заливался в деревянные таблетты. Для письма брали специальный металлический инструмент – стилус. Когда запись была не нужна, ее стирали обратным плоским концом стилуса.
   Письмо по воску существовало до появления пергамента – специально обработанной кожи животных. Он изготавливался по довольно сложной технологии, но зато был долговечен и позволял делать записи высокого качества.
   Считается, что бумага была впервые изготовлена примерно в 105 г. н. э. китайцем Цай Лунем из особого сорта крапивы. Отделенные от склеивающего вещества волокна мелко перетирались и путем многократного встряхивания в специальной форме переплетались. Готовый лист выкладывался на гладкий стол, накрывался каменной плитой и высушивался. Китайская бумага была легкой и мягкой, для производства не требовалось больших усилий и дорогого сырья.
   В 751 г. производство бумаги из тряпья началось в Самарканде, в 794 г. – в Багдаде. В X в. бумагу стали делать в Египте и Северной Африке. Там наряду с плотной писчей и оберточной бумагой делали тончайшие листы для голубиной почты.
   Примерно в 1150 г. бумага попала в Испанию. Здесь заработали первые в Европе бумажные мельницы. Высокого качества бумагу производили в Валенсии и Толедо. Сначала бумагу делали из хлопка, позже – из очесов, ветхого белья, старых канатов и парусов.
   Основными операциями в бумажном производстве были очистка и промывка тряпья, толчение его пестами в деревянных корытах, разрыхление полученной массы в чанах с водой и ее разливка на тонкие проволочные сетки. В целом технология насчитывала около 30 операций.
   В Италии бумага появилась в 1154 году. Там центром ее производства стал город Фабриано. Итальянские мастера значительно облегчили способы изготовления бумаги, применив для превращения волокнистого сырья в кашицеобразную массу так называемые толчеи. Они представляли собой толстое бревно с выдолбленными в нем углублениями или каменное корыто. Их заполняли измельченным тряпьем, добавляли воду и толкли деревянными пестами, окованными железом. Песты приводились в движение деревянным валом с кулачками, соединенным с колесом водяной мельницы. Итальянцы ввели в практику проклейку бумаги животным клеем. Это повысило ее прочность и снизило капиллярность.
   Первая бумага была рыхлой, непрочной, сероватого или желтоватого цвета. Со временем ее качество росло, с конца XIII в. на бумаге европейского производства появились водяные знаки.
   С появлением книгопечатания к бумаге стали предъявлять новые требования. Она должна была стать более гладкой, ровной, прочной, упругой, эластичной, хорошо впитывать краску.
   На рубеже XVII–XVIII веков в Голландии появился новый размалывающий аппарат – ролл. Он представлял собой ванну объемом от 3 до 18 м3, разделенную на две части (канала). В одном из каналов установлен ножевой размалывающий барабан, под которым закреплялись ножи, собранные в планки. При прохождении водного раствора, содержащего волокнистый материал, между ножами планки и вращающегося барабана материал размалывался и ножами барабана перебрасывался через перегородку в другой, оборотный канал, по которому вновь попадал в барабан. Ролл применяли в производстве тонких сортов бумаги.
   В конце XVIII в. появилась цилиндрическая машина для бесконечной бумаги, т. е. машина, в которой рабочим органом является цилиндр (барабан), обтянутый металлической тканью. Ее изобретателем был Лейстеншнейдер из французского города Понсэ.
   В 1799 г. француз Л. Робер создал «самочерпалку» – машину с механизированным отливом бумаги на бесконечной сетке с ручным приводом, расположенную над черпальным чаном. Позже к этому оборудованию были добавлены непрерывные секции прессования, сушки, каландрирования (пропускания между валами для придания гладкости), намотки бумаги в рулоны.
   Появление полиграфических машин увеличило потребность в бумаге. В связи с этим, наряду с производством бумаги из тряпья, появилась бумага из целлюлозы. Ее производство впервые наладил в Германии в 1844 г. Ф. Келлер.
   Во II половине XIX в. бумагоделательная машина была значительно усовершенствована: увеличилась ширина бумажного полотна, достигающая на современных машинах 9 м, возросла скорость выработки. Появились новые виды бумажной продукции, например многослойный картон, фильтрующая бумага для очистки моторных масел и топлива, конденсаторная бумага, прокладочный картон для автомобилей.
   Современная бумага значительно отличается от первых ее видов качеством и спектром применения. Она делится на классы, среди которых: бумага для печати, письма, чертежно-рисовальная бумага, электроизоляционная, впитывающая, светочувствительная, переводная, оберточная, промышленно-техническая.

Велосипед

   Велосипед «изобретали» несколько раз в разное время и в разных странах. Еще в 1680 году в Нюрнберге Стефан Фарфлер сконструировал трехколесную самодвижущуюся машину с ручным приводом. С 1690 года во Франции была построена подобная машина под названием «селерифер». Само слово «велосипед» пришло к нам из Франции в конце XVIII века. В переводе оно означает «быстрые ноги». В России считают, что еще в 1801 г. крепостной крестьянин Ефим Артамонов проехал от Урала до Санкт-Петербурга на двухколесной тележке собственного изобретения. Изобретатель приводил свое детище в движение, отталкиваясь ногами от земли. За это изобретение Артамонов получил вольную. Многие исследователи отрицают существование велосипеда Артамонова.
   Еще одним претендентом на авторство велосипеда является немецкий лесничий Карл фон Дрез, живший в начале XIX в. в г. Карлсруэ. Он был талантливым изобретателем, создавшим, в частности, прообраз пишущей машинки, мясорубку. Его любимым творением стала «беговая машина», построенная им в 1817 г. Ее конструкция очень проста: два высоких колеса – одно за другим, между ними узенькое сиденье. Седок отталкивался от земли ногами и мог передвигаться со скоростью 20 км/ч. Над Дрезом, ехавшим по улице на велосипеде, все смеялись. Но его машина, названная по фамилии изобретателя дрезиной, имела успех, правда, недолгий, в Лондоне и Париже. То, как выглядел велосипед Дреза, известно по карикатурам в юмористических журналах. Насмешки стали причиной забвения дрезины. Сам Дрез умер в нищете, его велосипед продали за 5 марок. А название «дрезина» закрепилось за другим изобретением Дреза – тележкой, передвигающейся по железнодорожным рельсам.
   Увлечение самокатом пережила Англия в 20-х годах XIX в. Там он сделался фирменным средством передвижения лондонских денди. Их самокаты изготавливались в виде потешных лошадок и назывались «денди-кони». Именно в Англии в 1818 г. был выдан первый патент на велосипед. Запатентованное устройство описывалось как «машина, служащая для уменьшения трудов и усталости от хождения, позволяющая в то же время использовать большую скорость и обгонять пешеходов».
   Следующий этап в истории велосипеда связан с изобретением в 1836 г. шотландцем Гевином Дальзелем педалей, избавивших ездока от необходимости отталкиваться ногами. Размеры переднего колеса начали неудержимо расти, пока не превысили человеческий рост. Такая конструкция была весьма неустойчива, особенно из-за отсутствия тормозов. Последние были придуманы в середине XIX в. одновременно в Германии и Франции. Филипп Фишер, слесарь из немецкого городка Оберндорф, до старости ездил на велосипеде собственного изготовления – с тормозами. В 1884 г. его сын Фридрих открыл фабрику по производству велосипедов. В отличие от Фишера француз Пьер Мишо, сконструировавший велосипед с тормозами в 1855 г., сам поставил на конвейер производство своих «мишолинов» и, продавая их по 500 франков за штуку, первым разбогател на этом изобретении. В 1858 г. англичанин Джон Шергольд придумал велосипедную цепь, а седло переместил к середине рамы.
   Во второй половине XIX столетия велосипед постоянно усовершенствовался. В 1867 г. появились спицы, в 1868-м – резиновый обод, в 1869-м – ведущее заднее колесо. Велосипеды постепенно перестали восприниматься как экзотика: в Париже в 1869 г. их насчитывается уже 1300 штук, а через тридцать лет – в пятьсот раз больше. Но основным недостатком велосипеда оставалась тряска при передвижении. В 1885 г. шотландский врач Данлоп, купивший своему сыну новый «бициклет», задумался над тем, как избавиться от непрерывной тряски. Он взял садовый шланг и обернул в него колеса. Сначала шланг наполнялся водой, но эта конструкция оказалась слишком тяжелой. Данлоп стал надувать отрезок шланга воздухом, ему же принадлежит идея ниппеля. Количество изобретений и усовершенствований, связанных с велосипедом, не иссякало: в 1892 г. во Франции было выдано 1000 патентов, в Англии – 2400, в США – 4000. В 1893 г. оба колеса стали одинакового диаметра, а в 1898 г. была придумана «трещотка», то есть свободный ход. Вот так постепенно велосипед получил привычный для нас вид.
   В начале XX в. велосипед был невероятно популярен: проводились бесконечные соревнования «циклистов», выпускалась специальная обувь и «велодоги» – револьверы для защиты от собак. Велосипедами снабжали почтальонов и курьеров. В Германии, а затем и в других странах начали создаваться велосипедные подразделения (в России они назывались «самокатными»). Разрабатывались велосипеды спортивные, охотничьи, складные, детские, дамские и т. д.
   В XX в. велосипед стал излюбленным средством передвижения во многих странах Европы и в Китае. В странах Азии на смену традиционным рикшам пришли велорикши. Развитие велоспорта привело к разделению спортивных велосипедов на шоссейные и трековые. Кроме того, долгое время в программе Олимпийских игр были трековые гонки на тандемах – велосипедах с двумя спортсменами.
   Технический прогресс второй половины XX в. не обошел и велосипед. Даже дорожные велосипеды стали многоскоростными. В изготовлении велосипедов стали применяться новые материалы – легированные стали, алюминиевые сплавы, композиты. Это позволило облегчить машины, сделать их более прочными. В конце XX в. стали популярны горные велосипеды с прочной рамой, широкими шинами. Велосипеды стали практически «вездеходными».

Вертолет

   Триста лет спустя после Леонардо М. В. Ломоносов построил первую модель вертолета. Она состояла из фюзеляжа и двух винтов, вращавшихся в разные стороны. Эта модель предназначалась для подъема термометров с целью измерения температуры воздуха в верхних слоях атмосферы. Двигателем служила часовая пружина.
   В 1784 г. французские изобретатели Лоннуа и Бьенвеню использовали в своей модели вертолета силу упругости сжатого лука. Вес их модели составлял около 80 г.
   В 1863 году француз Г. де Ланде издал книгу, в которой излагал проект аппарата под названием «аэронеф». У «аэронефа» были крылья, тянущий винт и вертикальные мачты, на которых располагались подъемные винты. Из проекта де Ланде изобретатели в дальнейшем многое позаимствовали.
   В 1869 г. русский изобретатель А. Н. Лодыгин обратился в Главное инженерное управление русской армии с проектом аппарата вертикального взлета с электрическим двигателем. Этот аппарат, названный изобретателем «электролет», предназначался для воздушной разведки и бомбардировки.
   В 90-е годы XIX в. созданием вертолета начал заниматься H. Е. Жуковский вместе со своими учениками. Ученый считал, что за геликоптером всегда будет оставаться преимущество безопасного подъема и спуска.
   И вот в 1907 году появился вертолет, который смог оторваться от земли. Его сконструировали французы, братья Л. и Ж. Бреге, совместно с профессором Ш. Рише.
   Русский изобретатель И. И. Сикорский в 1901 г. еще в детстве построил модель своего первого вертолета с двигателем на резинке. Позже он создал большую модель с двумя пропеллерами, которая поднялась в воздух и летала в нескольких метрах над землей.
   В 1903 г. Сикорский поступил в Российскую военно-морскую академию в Петербурге, а в 1906-м продолжил изучение инженерного дела в Париже. В 1907 г. он возвратился в Киевский политехнический институт. Игорь Сикорский вернулся к своей идее летательного аппарата, который бы поднимался в воздух вертикально с помощью вращающегося пропеллера. Во время путешествия по Германии Сикорский производил в гостиничных номерах расчеты, необходимые для запуска вертолетного пропеллера диаметром 120 см. Благодаря финансовой поддержке сестры Сикорский возвратился в Париж для изучения аэродинамики и приобретения необходимых компонентов для создания своего первого вертолета.
   В 1909 г. Сикорский вернулся в Киев с трехцилиндровым двигателем от мотоцикла «Анзани» мощностью 25 л. с. и на его основе создал вертолет с двумя одновременно вращающимися винтами. Конструкция была довольно неудобна для пилота, в кабине везде торчали провода, приводившие в движения лопасти пропеллера. Однако Сикорский добился главного: он решил проблему вибрации и продемонстрировал способность своей машины подняться в воздух посредством «роторных крыльев». По расчетам инженера, его вертолет мог подниматься в воздух с грузом в 140 кг.
   Конструкция была еще очень несовершенна, и Сикорский отказался от своей первой модели. В октябре 1909 г. он вернулся в Париж для изучения уже имеющихся к тому времени моделей аэропланов.
   После приезда в Россию молодой изобретатель в феврале 1910-го использовал моторы для создания второй, вновь неудачной, модели вертолета. Маленький биплан «S-1» так и не взлетел. Биплан «S-2» и большая модель «S-3» смогли лишь ненадолго подняться в воздух. А модель «S-5» с мощностью двигателя 50 л. с. в мае 1911 г. не только поднялась в воздух, но и продемонстрировала свою способность летать. Игорю Сикорскому Российским Императорским аэроклубом была выдана лицензия на изобретение.
   Еще в конце XIX в. было предложено несколько схем вертолета: одновинтовая, соосная, поперечная и продольная схема расположения винтов.
   Недостатком одновинтовой схемы был реактивный момент, возникающий при вращении винта. Он заставлял вращаться не столько сам винт, сколько гондолу вертолета. Для его компенсации предлагалось устанавливать рулевые винты или применять двухвинтовую соосную схему. Для обеспечения поступательного движения вертолета предлагалось применять пропеллеры или наклон оси вращающегося винта. Были также предложения использовать машущие крылья, гребные колеса, наземные буксиры и парус.
   Особую роль в истории мирового вертолетостроения занимает работа в 1908–1914 гг. студента Московского технического училища Б. Н. Юрьева. Он возглавлял группу студентов, членов комиссии по геликоптерам при Воздухоплавательном кружке МТУ. В 1911 г. Юрьев разработал проект одновинтового вертолета с хвостовым рулевым винтом. В этом проекте Юрьев смог решить проблему уравновешивания реактивного момента, действующего на гондолу. Для этого он применил рулевой винт, установленный на хвосте вертолета и приводимый в движение передачей от двигателя. Поскольку у силы, создаваемой хвостовым винтом, было большое плечо относительно центра тяжести вертолета, ее действие уравновешивало реактивный момент. Для поворота вертолета Юрьев предложил делать шаг лопастей хвостового винта изменяемым. При увеличении тяги этого винта можно было преодолевать реактивный момент главного винта и разворачивать машину в нужном направлении.
   Чтобы обеспечить управляемость вертолета относительно продольной и поперечной осей, можно было поставить сбоку и спереди машины по одному винту. Боковой винт управлял бы креном вертолета, а передний регулировал высоту полета аппарата. Однако такая схема была очень сложной и делала вертолет неустойчивым. Поэтому Юрьев сконструировал несущий винт таким образом, что тот самостоятельно создавал оба момента, необходимые для управления вертолетом. С этой целью изобретатель создал аппарат перекоса. Принцип его работы состоял в том, что управление полетом осуществлялось путем изменения угла наклона лопастей к плоскости вращения, что достигалось подвижностью лопастей относительно их продольных осей. Если разные участки описываемого круга лопасть проходила с различными углами установки, то это приводило к увеличению или уменьшению тяги на этих участках. В результате несущий винт поворачивался в соответствующую сторону.
   Необходимую установку лопастей и обеспечивал автомат. Он состоял из двух колец, связанных жесткой скользящей связью и подвешенных на кардане на неподвижной опоре. Внутреннее, подвижное, кольцо было связано тягами с рычагами, поворачивающими лопасти, и вращалось вместе с валом винта. Внешнее, неподвижное, кольцо было связано с тягами продольного и поперечного управления. Оно передавало усилие от этих тяг на подвижное кольцо, изменяя при этом угол наклона последнего. Наклоняясь, подвижное кольцо вызывало изменение углов установки лопастей относительно продольной оси и появление горизонтальной составляющей тяги несущего винта. Эта составляющая сообщала вертолету поступательное движение и наклоняла его в сторону движения. Для поворота было необходимо направить в нужную сторону внешнее кольцо.
   Для вертикального перемещения вертолета служила система управления общим шагом винта. Оно достигалось одновременным увеличением или уменьшением углов установки всех лопастей несущего винта путем поднимания или опускания скользящего кардана автомата перекоса. Одновременно увеличивалась или уменьшалась тяга двигателя.
   В 1912 г. вертолет Юрьева был выставлен на Международной выставке воздухоплавания в Москве. Работа была отмечена Малой золотой медалью. После замены макетных деталей настоящими были проведены испытания для получения характеристик несущего винта. Они были прерваны из-за плохой работы двигателя и поломки вала винта. Дальнейшей работе помешала мировая война.
   Бурное развитие самолетостроения привело к тому, что конструкторы на время оставили вертолет без внимания. Лишь в 1923 г. испанец Пескара создал вертолет, который десять минут парил в воздухе на высоте трех метров и пролетел в общей сложности 300 м.
   В 1924 г. француз Эмишен построил вертолет, который поднялся и пролетел на высоте полтора метра около 120 м. Управлял им сам Эмишен. Эта машина умела зависать в воздухе, разворачиваться на месте и лететь задним ходом.
   Надежно действующий вертолет удалось создать группе сотрудников Центрального аэрогидродинамического института под руководством Юрьева. Это был одноместный 1-ЭА с одним несущим и двумя рулевыми винтами. На нем была достигнута высота 605 м. В 1938 г. под руководством Братухина был создан вертолет 11-ЭА, на котором была применена поперечная схема.
   Аналогичную схему использовал в 30-е годы и немецкий конструктор Фокке. В 1937 г. его машина FW-61 установила мировые рекорды скорости – 123 км/ч и высоты – 2439 м. В 1941 г. FW-223 был выпущен небольшой серией.
   Свою детскую мечту И. Сикорскому удалось реализовать. В 1919 г. он эмигрировал в США, где создал свою фирму «Сикорский». В 1939 г. изобретатель создал свой первый вертолет S-46. Он отказался от полных расчетов машины и вносил изменения прямо в ходе испытаний. Вертолет имел простую конструкцию: фюзеляж представлял собой ферму из стальных труб, кресло пилота было открытым и находилось впереди двигателя мощностью 65 л. с. Вращение посредством ременной передачи передавалось на редуктор, приводящий в движение трехлопастный несущий винт. Рулевой однолопастный винт устанавливался в хвосте на коробкообразной балке.
   Испытания показали несовершенство конструкции. Из-за неправильного расчета плохо работал автомат перекоса. Это привело к плохой управляемости вертолета. При одном испытании он опрокинулся и разбился. После этого Сикорский применил схему с тремя рулевыми винтами. Эта машина хорошо управлялась, и в мае 1940 г. Сикорский показал ее летчикам. Вертолет свободно перемещался в разные стороны, зависал неподвижно и разворачивался на месте, но при этом не летел вперед. После определения и устранения недостатка летные качества машины значительно улучшились. Два года Сикорский менял конструкцию, используя различные системы управления. Это помогло ему в создании новых вертолетов.
   В 1941 г. Сикорский получил военный заказ на вертолет, предназначенный для корректировки артиллерийского огня и связи. На этой модели был вновь применен автомат перекоса, рассчитанный более тщательно. В апреле 1942 г. машину показали военным. Во время полета S-47 продемонстрировал свои огромные возможности, перемещаясь в разные стороны, зависая на месте. В зависший вертолет поднимался пассажир.
   После запуска в серийное производство S-47 получил название XR-4. Свое боевое крещение он получил в джунглях Юго-Восточной Азии, где стал единственным средством снабжения армии. Позже был сконструирован XR-5, на который установили специальный вертолетный двигатель. В дальнейшем вертолеты Сикорского получили распространение в различных отраслях хозяйства.
   После войны в СССР были созданы конструкторские бюро М. Л. Миля и Н. С. Камова. В первом разрабатывались одновинтовые вертолеты, во втором – вертолеты, работающие по двухвинтовой соосной схеме. Кроме них вертолетами занималось КБ А. С. Яковлева. Первым советским серийным вертолетом стал Ми-1, выпуск которого начался в 1951 году.
   На современных вертолетах устанавливают поршневые и воздушно-реактивные двигатели. Для кратковременного увеличения мощности при взлете и посадке вертолета может применяться ракетный двигатель. На некоторых вертолетах применяли самолетные одновальные турбовинтовые двигатели и двухвальные турбовинтовые двигатели со свободной турбиной. Возможен также реактивный привод несущего винта, в котором окружное усилие создается автономными реактивными двигателями, расположенными на лопастях несущего винта, или истечением газа из сопловых отверстий, расположенных на концах лопастей.
   Вертолеты применяются в вооруженных силах для перевозки войск и грузов, огневой поддержки сухопутных войск, разведки, поиска и уничтожения подводных лодок. В народном хозяйстве вертолеты используются для перевозки пассажиров, грузов, уничтожения вредителей сельхозкультур, удобрения полей, монтажных работ.

Видеомагнитофон

   Казалось бы, что после создания магнитофона запись изображения на магнитную ленту не будет представлять больших проблем.
   Вначале предпринимались попытки записи изображений с помощью продольного способа, который применялся для магнитной записи звука. При этом способе лента протягивается относительно неподвижной головки. Но этот способ оказался неэффективным.
   Причина в следующем: чтобы записать спектр звука с максимальной частотой 20 кГц, ленту протягивают мимо головки со скоростью около 9,5 см/с; при скорости вдвое меньшей, то есть 4,7 см/с, предельная частота записи 10 кГц, а при скорости 2,4 см/с – не более 4–5 кГц. Таким образом, для увеличения максимальной частоты записываемого сигнала нужно в два раза повысить скорость протягивания ленты.
   В действительности многое зависит от состава ферромагнитного слоя, его зернистости, толщины и ширины зазора в головке. Но, в общем, суть проблемы не меняется: чем меньше скорость, тем ниже частота, которую еще можно записать.
   Приведенные цифры относятся к магнитной записи звука. А вот как обстоят дела с записью изображения.
   В большинстве телевизионных стандартов мира при считывании картинки электронный луч прочерчивает по ней 625 строк, в каждой строке может быть воспроизведено примерно 800 точек различной яркости. То есть телевизионная картинка – это мозаика из 625×800=500 000 точек. Для воспроизведения движения картинка передается 25 раз в секунду, поэтому каждую секунду в телевидении может передаваться 500 000×25=12,5 млн сообщений о яркости различных точек. То есть ток считывающего луча может меняться более 12 млн раз в секунду и в спектре видеосигнала могут быть составляющие с частотой более 6 мегагерц. Это в 300 с лишним раз превышает наибольшую частоту в спектре звукового сигнала (20 кГц). Если для записи звука магнитная лента протягивается мимо головки со скоростью 9,5 см/с, то для записи видеосигнала нужно протягивать ленту в 300 раз быстрее, т. е. со скоростью 30 м/с или около 100 км/час.
   На заре видеозаписи были попытки записывать видеосигнал, протягивая пленку на больших скоростях. Подобные попытки не дали желаемых результатов. Несмотря на это, видеозапись стала реальностью – решение проблемы в принципе оказалось очень простым.
   Первые серьезные результаты были получены в начале 1950-х годов благодаря использованию поперечно-строчного способа магнитной записи видеосигналов. При поперечно-строчной записи одна или несколько головок располагались на вращающемся диске, ось вращения которого совпадала с направлением движения ленты. При одновременном движении ленты и вращении диска головки «прочерчивали» на ленте практически поперечные строчки записи. Причем относительная скорость головки относительно ленты была гораздо более высокой, чем скорость протягивания самой ленты. Это существенно повысило плотность записи и уменьшило скорость движения ленты, а следовательно, и ее расход.
   Этот способ изобрели американские инженеры Гинзбург и Андерсон из фирмы АМРЕХ, которую создал русский эмигрант А. М. Понятов. В его честь сам процесс записи долго называли «ампексированием».
   Еще одним новшеством было применение переноса спектра телевизионного сигнала при записи в более высокочастотную область. Оно осуществлялось путем частотной модуляции несущего колебания. Его частота была чуть больше, чем верхняя частота видеосигнала. Это позволило регистрировать сигнал изображения в необходимой полосе частот 50 Гц–5,5 МГц.
   Конструкция механизма видеомагнитофона с поперечно-строчной записью была достаточно сложной. Более простым решением оказалось применение наклонно-строчного способа записи, при котором лента со сравнительно небольшой скоростью протягивается вперед, а вращаются головки, закрепленные на барабане. Ось вращения барабана расположена под определенным углом к продольной оси ленты. Дорожки видеозаписи представляют собой отдельные строчки, расположенные одна рядом с другой под углом к продольной оси ленты.
   Необходимая скорость движения головки относительно ленты достигается довольно легко – если головка расположена на барабане диаметром 10 см и он совершает 6 тысяч оборотов в минуту, то скорость движения головки относительно ленты составляет около 30 м/с.
   Первые видеомагнитофоны были катушечными и предназначались для профессионального использования. Одной из причин, по которой распространение видеомагнитофонов в быту было медленным, являлась сложность заправки ленты в лентопротяжный механизм катушечного видеомагнитофона.
   Первые кассетные видеомагнитофоны, в которых заправка ленты происходила автоматически, стала выпускать фирма «Сони» в формате U-Matic в 1971 г. и фирма «Филипс» в формате VCR в 1972 г.
   Сейчас наиболее распространенным форматом бытовой видеозаписи является VHS (Video Home System), разработанный японскими фирмами «Мацусита» и JVC в 1975 г., а также его модификации.
   В этом стандарте лента шириной 12,65 мм располагается в кассете размером 188×104×25 мм. Продолжительность записи зависит от толщины ленты и может достигать 300 минут для одной кассеты при стандартной скорости движения ленты.
   Сначала для записи и воспроизведения изображения применялся вращающийся барабан с двумя видеоголовками, расположенный наклонно относительно ленты. Одна из них записывала один полукадр на одной наклонной строчке. После окончания записи полукадра, первая головка отходила от пленки, а вторая подходила к ней и начинала писать на соседней строке следующий полукадр. Эти строки располагались рядом без зазора.
   В дальнейшем стали использовать четыре видеоголовки. Это позволило вести экономную запись и воспроизведение при меньшей скорости ленты (режим «long play»). Кроме того, их применение улучшило качество воспроизводимого изображения при замедленном, ускоренном и покадровом воспроизведении.
   По верхнему краю видеоленты проходит продольная дорожка, на которой при помощи неподвижной головки осуществляется запись звука.
   Для записи стереозвука позже начали применять блок из двух головок. Из-за малой скорости движения ленты – всего 2,4 см/с, диапазон записываемых звуковых частот был узким – 70–8000 Гц. Затем, благодаря улучшению качества лент и применению более совершенных головок, его удалось расширить до 40–13 000 Гц.
   В нижней части ленты находится дорожка управления, на которой записываются управляющие сигналы. Они синхронизируют вращение барабана при воспроизведении так, чтобы головки точно попадали на дорожки записи. Относительная скорость видеозаписи составляет 4,84 м/с. Это позволило записывать и воспроизводить видеосигналы с разрешающей способностью около 240 линий по горизонтали.
   В 1984 г. формат VHS был утвержден в качестве формата бытовой видеозаписи.
   Позже были разработаны и другие форматы видеозаписи, представляющие собой усовершенствованный формат VHS: VHS-HQ, Hi-Fi VHS, Super VHS и др.
   В 1980-е годы были созданы и другие стандарты видеозаписи, например Video-8 (Hi-8) и Бетакам.
   В 1986 г. фирма «Сони» создала первый промышленный цифровой видеомагнитофон DVR-1000 формата D1. Так начался этап цифровых видеомагнитофонов, обеспечивающих более высокое качество записи и воспроизведения.

Воздушный шар

   Хотя история воздухоплавания насчитывает чуть более двухсот лет, стремление человека оторваться от Земли и взлететь, подобно птице, проявлялось еще в глубокой древности. Умение летать считалось чем-то необычайным, присущим могущественным волшебникам или, по мнению наших предков, богам. Неслучайно многие из богов изображались в виде крылатых существ. Наиболее известное предание о полетах человека – миф о великом мастере Дедале и его сыне Икаре. Скрываясь от гнева царя Миноса, они улетели с Крита на крыльях, сделанных из птичьих перьев, скрепленных воском. Мудрый Дедал летел невысоко. А его сын, несмотря на предостережения отца, устремился к Солнцу. Солнечные лучи растопили воск, и Икар упал в Эгейское море.
   Желание овладеть воздушной стихией привело к появлению множества проектов, большей частью неосуществимых. Тема воздухоплавания присутствует во многих литературных произведениях. Так, известный забияка и дуэлянт Сирано де Бержерак в своем романе «Иной свет, или Государства и империи Луны» описал несколько летательных аппаратов для путешествия по воздуху. Один из этих аппаратов поразительно похож на аэростат Монгольфье. Герой романа с помощью двух наполненных дымом герметических оболочек долетает до Луны, где выпускает дым и, пользуясь оболочками как парашютом, опускается на ее поверхность.
   В 1670 г. итальянец Лан предложил проект воздушного корабля. Он представлял собой гондолу, к которой канатами прикреплялись четыре полых шара из меди или жести диаметром 7,5 метра и толщиной стенок 0,5 миллиметра. Посредине гондолы была прикреплена мачта с парусом. Изобретатель предлагал выкачать воздух из шаров, с тем чтобы разность между массой вытесненного шарами воздуха и их собственной массой была достаточной для поднятия гондолы с пассажирами.
   Этот проект был не выполним, поскольку при такой толщине стенок шара силы внешнего атмосферного давления неминуемо бы его смяли. Но вместе с тем, это был первый проект летательного аппарата, принцип работы которого основан на законе Архимеда.
   Важнейшим событием, оказавшим влияние на развитие воздухоплавания, стало открытие и исследование Генри Кавендишем в 1766 г. водорода, или, как его называли тогда, «горючего воздуха». Из-за малой плотности его сразу начали рассматривать как несущий газ для воздушных шаров.
   Мир стоял на пороге воздухоплавания. Но многие авторитетные ученые того времени отвергали возможность этого. Так астроном Лаланд в 1782 г. писал: «Невозможность подняться вверх с помощью ударов крыльями столь же твердо установлена, как и невозможность подняться с помощью тел, из которых выкачан воздух».
   Действительность не преминула в очередной раз опровергнуть заявление непререкаемого «авторитета».
   В 1783 г. наблюдения Жозефа и Этьена Монгольфье за облаками привели их к мысли использовать для аэростата водяной пар. Но первые опыты оказались неудачными из-за слишком тяжелой оболочки и быстрой конденсации пара. Тогда они решили использовать дым, образующийся при горении шерсти и сырой соломы. По мнению братьев, дым имел электрические свойства, а электричеству они приписывали свойства отталкиваться от поверхности земли.
   После ряда неудач пришел успех – одна оболочка, наполненная дымом, оторвалась от удерживающих веревок и поднялась на высоту около 300 метров. После десятиминутного пребывания в воздухе оболочка рухнула на землю.
   5 июня 1783 г. прошло официальное испытание нового аппарата. В присутствии зрителей наполненная дымом оболочка объемом 600 м3 поднялась на высоту около двух тысяч метров и затем упала на расстоянии двух километров от места подъема. Так началась эра воздухоплавания.
   27 августа 1783 г. в Париже состоялся полет аэростата профессора Шарля. В отличие от аппарата Монгольфье с матерчатой, оклеенной изнутри бумагой камерой, аэростат Шарля был сделан из шелка, пропитанного каучуком. Объем его был 35 м3. Но главное отличие состояло в том, что оболочка наполнялась водородом. Аппарат Шарля быстро поднялся на высоту 950 метров и скрылся в облаках. От избыточного давления на большой высоте его оболочка лопнула, деревенские жители, напуганные непонятным предметом, свалившимся с неба, поспешили уничтожить шар.
   После этого полета аэростаты, наполненные горячим воздухом или дымом, стали называть монгольфьерами, а наполненные водородом – шарльерами.
   19 сентября 1783 г. в воздух поднялся монгольфьер с подвешенной на цепях клеткой. В ней находились первые «воздухоплаватели» – петух, утка и баран. Они благополучно перенесли полет. Теперь стало возможным поднять на аэростате человека.
   21 ноября 1783 г. в воздух на монгольфьере поднялись Пилатр де Розье и Арланд. Их аппарат, преодолев 8 километров, приземлился в пригороде Парижа. В полете они едва не погибли из-за пожара.
   1 ноября того же года профессор Шарль вместе с единомышленником Робером поднялся в воздух на аэростате собственной конструкции. Они пробыли в воздухе 2 часа 15 минут, пролетев за это время 40 километров.
   Следует отметить, что конструкция шарльера была более совершенной, чем монгольфьера. Первый обладал большей подъемной силой. Кроме того, недостатком монгольфьера была высокая пожароопасность из-за соседства открытого огня и легковоспламеняемой оболочки.
   Полеты на воздушных шарах становились все более популярными. С начала XIX века их стали использовать для научных целей. В 1802 г. Гумбольдт и Бомплан исследовали зависимость изменения температуры воздуха от высоты. В полетах принимали участие русский академик Захаров и Гей-Люссак. Исследования позволили получить данные о зависимости температуры, давления, влажности воздуха, его состава от высоты. Было изучено воздействие высоты на организм человека.
   В 1887 г. Д. И. Менделеев совершил самостоятельный полет, чтобы наблюдать солнечное затмение.
   В первых научных полетах аэронавтам удавалось подняться на высоту семь и более тысяч метров. Начиная с 5000 метров у них появлялась слабость, головокружение, снижение остроты слуха и зрения. С увеличением высоты эти симптомы усугублялись. На высоте более 8000 метров человек терял сознание.
   В некоторых высотных полетах стали использовать баллоны, позволяющие вдыхать чистый кислород. Но полностью решить эту проблему не удавалось. Несмотря на это, к концу XIX века на аэростатах были поставлены рекорды.
   В 1894 г. немец Берсон на аэростате «Феникс» поднялся на высоту 9150 метров, а в 1900 году во время Всемирной выставки в Париже французы де ла Во и Костельон на аэростате «Центавр» за 35 часов 45 минут преодолели расстояние в 1922 километра, приземлившись в Киевской губернии.
   Успехи аэронавтики рассматривали как доказательство возможности достичь на воздушном шаре Северного полюса. Такую попытку предпринял в 1897 г. швед С. А. Андре. Его аэростат «Орел» был сконструирован с учетом суровых климатических условий Арктики. Для повышения надежности на нем было предусмотрено три клапана для выпуска газа. Гондола представляла собой закрытую со всех сторон каюту, на крыше которой находилась площадка для наблюдений. При необходимости она могла быть переоборудована в лодку или сани.
   11 июля 1897 г. Андре вместе со Стриндбергом и Френкелем поднялся в воздух с острова, расположенного неподалеку от Шпицбергена. Спустя два дня после начала полета Андре послал с почтовым голубем свое последнее сообщение. Лишь в 1930 г. был обнаружен лагерь отважных воздухоплавателей.
   Гибель экспедиции Андре показала, что аэростат нельзя считать надежным средством воздушного передвижения. Несмотря на все усовершенствования, они всецело зависели от погодных условий: силы и направления ветра, температуры, давления и влажности воздуха.
   С момента своего появления воздушные шары использовались в военных целях – для наблюдения за наземными войсками, в составе кораблей на море – для обнаружения мин и подводных лодок противника. С появлением боевой авиации стали применять привязные аэростаты заграждения, связанные с землей прочным стальным тросом.
   В 20–30-е годы XX в. были созданы стратостаты – аэростаты с герметичной гондолой для исследования верхних слоев атмосферы. Они достигали высоты 20 километров.
   В настоящее время воздушные шары нашли себе применение в метеорологии для запуска на большие высоты автоматических метеорологических станций. Появление современных прочных газонепроницаемых материалов, газовых горелок, позволяющих длительное время поддерживать высокую температуру внутри шара, дали возможность создать воздушные шары для спортивных целей.
   Воздушные шары, несмотря на все свои недостатки, позволили человечеству расширить свои возможности, освоить «пятый океан» – атмосферу Земли.

Географические карты

   У каждого народа на разных этапах развития были свои особые карты.
   Одним из основных занятий первобытного человека было собирательство злаков, заставлявшее его постоянно перемещаться. Человек учился ориентироваться в окружающем мире и создавать изображения природных объектов. Так появились простейшие картографические рисунки, дававшие изображение местности в плане или перспективе. На них были изображены наиболее важные объекты: пути сообщения (в частности реки), охотничьи угодья, места рыбной ловли.
   Пространственные представления и картографические изображения племен были тем совершенней, чем больший путь они прошли. Так, индейцы Северной Америки, кочуя вместе со стадами бизонов, проходили расстояние до 2000 км. У них были свитки карт, нарисованных на бересте и коже. У народностей Сибири и Дальнего Востока были карты, начерченные на коре деревьев, поразительно точно изображавшие местность.
   Жители лесов и степей по-разному ориентировались на местности. Первые определяли свое местоположение по природным объектам – рекам, горам. Степняки, ввиду отсутствия таких природных ориентиров, выработали систему ориентирования по сторонам света. Поэтому лесные племена при составлении карт брали за основу реки, горы, тропы, а степные жители – направления и расстояния пути. Именно в степи появились представления о сторонах света и господствующих на их просторах ветрах.
   Кочевники сперва знали лишь два слова для обозначения сторон света: «вперед» и «назад».
   Прибрежные племена, занимавшиеся морским рыболовством, использовали для ориентирования очертания побережья и направление между отдельными пунктами. Например, эскимосы Гренландии и Аляски, охотясь на морского зверя среди островов и побережий с изрезанной береговой линией, научились прекрасно в них ориентироваться. Они отображали рельеф при помощи резьбы на дереве или моделировали его из подручного материала – песка и камня.
   Уникальными в истории картографии являются карты, распространенные на Маршалловых островах Тихого океана. Из-за малой высоты Маршалловы острова не могли служить надежным ориентиром. Поэтому для создания карт туземцы архипелага использовали выявленные многими поколениями закономерности взаимодействия морской зыби, создаваемой господствующими северо-восточными ветрами с побережьями этих островов.
   Карты аборигенов Маршалловых островов имели каркас из черенков пальмовых листьев. Положение черенков указывало фронт морской зыби, поднимавшейся господствующими ветрами. Другая система черенков обозначала расстояния, на которых острова становились видимыми. Острова на этих картах обозначались раковинами, крепившимися к каркасу.
   Для того чтобы совершить переход от одного острова к другому, аборигены располагали карту на палубе лодки так, чтобы угол между курсом судна и видимым фронтом волн был постоянным. Нужный угол определялся по карте.
   Способ изготовления этих карт передавался от отца к сыну и держался в секрете.
   На ранних этапах развития человеческого общества карты были практическими пособиями в труде, указателями кочевых путей, мест охоты и рыбной ловли, способом ориентирования. Они ограничивались небольшими территориями и были предельно конкретны.
   При составлении карты древний картограф обязательно помещал в центре свое жилище.
   С переходом к оседлой жизни и земледелию потребовалось умение составлять план земельного участка. Карты этого периода посвящены земельным ресурсам и их использованию. Здесь приоритет принадлежит египтянам. Среди древнеегипетских карт есть планы угодий и планы различных строений, рудников, схемы ирригационных систем.
   В Древнем Египте и Греции появились два направления в картографии. Первое представляли египетские землемеры – геометры, занимавшиеся съемками небольших участков земли и планированием сооружений. Представители другого направления изучали природу и форму Земли в целом, решали задачи, связанные с изображением выпуклой земной поверхности на плоскости.
   География Древней Греции состояла из страноведения и космографии. Развитие первого направления было связано с развитием торговли и мореплавания. Второе направление выразилось в выдвижении различных естественно-научных теорий о происхождении и строении мира.
   Одной из первых моделей Земли, предложенных греками, был круглый диск, слегка выпуклый посередине, омываемый бурно текущими водами реки – Океана. Среднюю часть диска занимали территории, населенные эллинами. В центре – гора Олимп, обитель богов. Над дискообразной Землей с рекой – Океаном – опрокинут неподвижный небесный свод, радиус которого равен радиусу Земли. В некоторых вариантах этой модели свод опирался на колонны, иногда его поддерживал титан Атлант.
   По модели, предложенной Анаксимандром, Земля имеет форму отрезка круглой колонны, высота которой в три раза меньше ее диаметра. На верхней плоскости живут люди. Сама колонна находится в центре мироздания и ни на что не опирается. Демокрит во время своих путешествий обнаружил, что Земля продолговата и ее длина в полтора раза больше ширины.
   Гипотезу о шарообразности Земли приписывают Пифагору. Ученый Евдокс сделал попытку доказать эту гипотезу научным путем: круглая тень на Луне во время ее затмения, расширение горизонта при подъеме в гору и т. п.
   Считают, что именно Евдокс первым использовал гномон для определения широты места. Он высказал догадку, что если Земля шарообразна, то расстояние пунктов от экватора можно определить, используя соотношение продолжительности летнего и зимнего дней в дни солнцестояния.
   Фалес Милетский предложил для построения карты звездного неба первую картографическую проекцию – гномоническую.
   Пифей определял широту места с помощью гномона в день летнего солнцестояния. Считают, что он установил наличие беззвездной точки Северного полюса, образующую с тремя соседними звездами почти правильный четырехугольник.
   Александрийский ученый Эратосфен из Кирены обобщил накопленные данные о поверхности земного шара. Ему приписывается введение самого термина «география». Он определил размер Земли с точностью, превзойденной лишь в конце XVIII в. Весь обитаемый мир Эратосфен разделил на 7 параллелей, или климатов. Перпендикулярно параллелям он провел 9 меридианов. Сетка параллелей и меридианов позволила ему вычертить карту земли обитаемой – Ойкумены.
   Эратосфен предположил, что Ойкумена – известная грекам часть обитаемой суши – это небольшой остров среди обширного океана. Из этого он сделал вывод, что кроме этой Ойкумены должны существовать и другие обитаемые земли. Эратосфен выдвинул гипотезу о четырех массивах суши, отделенных друг от друга океанами и симметрично расположенных по обе стороны «жаркого необитаемого пояса» (экватора). Страбон приписывает эту гипотезу смотрителю Пергамской библиотеки Кратесу Малосскому. Тот изготовил большой глобус, на него нанес маршрут плавания героев «Одиссеи» и изобразил эти четыре массива суши.
   Сфера Кратеса стала моделью символа царской власти – державы, шара, разделенного на четыре части и увенчанного крестом. Держава была символом власти и византийских императоров, и русских царей.
   Считается, что ученые античности применяли ряд проекций для изображения поверхности шара на плоскости. Так, Страбон предложил принцип цилиндрической проекции. Древние астрономы использовали стереографическую, ортографическую и другие проекции для построения карт звездного неба.
   Первым научным трудом по картографии считается восьмитомное «Руководство по географии» Клавдия Птолемея. Оно включало общее определение географии, инструкции для составления конической и псевдоконической проекций для карт мира, предложения о разделении общей карты мира на региональные карты большего масштаба. Сохранились копии этого труда Птолемея с 12 картами Азии, 10 – Европы и 4 – Африки.
   Известны варианты, содержащие 64 карты со списком географических объектов, количество которых доходит до 8000. Координаты этих объектов определялись с помощью двух систем: долгота и широта в градусах и в единицах времени, широта – по продолжительности наиболее длинного дня, долгота – в часах от начального меридиана. Начальный меридиан Птолемея проходил через «Счастливые» (Канарские) острова, а его карта мира простиралась на 180 градусов на восток до Китая.
   Кроме карты Птолемея до нашего времени дошла «Поздняя копия дорожной карты Римской империи», названная исследователями «Пейтингеровой таблицей». Это свиток длиной 6,74 метра и шириной 34 сантиметра. На ней – известные римлянам страны от Британских островов до устья Ганга. Изображение намерено сжато с севера на юг. Моря вытянуты вдоль карты в виде узких лент. На таблице изображена сеть дорог с обозначениями станций.
   Для измерения земельных наделов в Древнем Риме существовали землемеры. Во время раскопок в Помпее были обнаружены простейшие геодезические инструменты, использовавшиеся землемерами. Это «грома» – комбинация визирных линеек для построения прямых углов на местности, солнечные компасы, линейки, солнечные часы.
   Император Константин содержал целый корпус гражданских землемеров. Главной их обязанностью было центуризировать земли, то есть деление земли на квадратные участки со стороной 2400 римских футов (1 римский фут = 294,9 мм). После построения сетки центурий землемер составлял карты соответствующих районов. Они гравировались на меди. Один экземпляр такой карты отсылался в императорский архив, другой оставался у местных властей. Кроме того, планы центурий наносились на специальные камни, лежащие на границах центурий.
   В древности в Индии карты чертили на пальмовых листьях и коре дерева. В разных источниках упоминаются инструменты, использовавшиеся для съемок: гномон, линейки, шнуры и жезлы для измерения расстояний, вехи, бычьи шкуры для измерения площадей.
   Хроника «Суриасиддханта» сообщает о создании в IV–V вв. н. э. глобуса из дерева с небесной сферой и главными кругами, изображенными при помощи бамбуковых палочек. В ней искусство картографии названо секретом богов, доступным избранным.
   В «Брахмасиддханте» рассказывается о глобусе, на котором были показаны континенты, океаны, горы, реки, города.
   Дошедшие до нас индийские карты чеканились на металле. Они хранились в храмах и использовались в ритуальных целях. Изображены были 7 материков и океанов. Сушу рассекали реки, изображена была флора и фауна.
   С распространением христианства в Европе и Малой Азии возникли библейские представления о мироустройстве. Они во многом совпадали с представлениями эллинов. Так, в Ветхом Завете сказано, что Земля – это плоский круг, ограниченный куполообразным небесным сводом. Хотя в некоторых эпизодах она представлена как плоскость, имеющая концы, а небо зиждется на опорах и столпах, но не лежит непосредственно на Земле. По форме небо напоминает шатер, но иногда о нем говорится как о тонкой ткани, распростертой над Землей. В Библии сказано, что есть два Неба. Нижнее – Твердь небесная. К ней крепятся светила, ее противоположная плоскость – служит дном Небесного моря. Верхнее небо – крыша строения, состоящего из двух этажей. Это Вселенная.
   Воды, сосредоточенные над Твердью небесной, проливаются на Землю дождем через особые окна.
   Согласно Святому Писанию, посреди Земли стоит Святой город Иерусалим, Рай находится на Земле. Его омывают четыре реки: Тигр, Евфрат, Геон и Фисон.
   В восточно-христианском богословии сложились две основные космогонические школы: антиохийская и каппадокийскоал ександрийская.
   Представители антиохийской школы отвергали теорию шарообразности Земли, считали Землю плоской. Некоторые богословы, такие как Феодор Мопсуэстийский, считали форму Земли прямоугольной. Края неба при этом смыкались с Землей. Ефрем Сирин считал Землю не прямоугольником, а плоским кругом. Теория плоской Земли отвергала возможность ее вращения.
   Идея шарообразной Земли предполагала наличие антиподов – жителей противоположной стороны земного шара. Лактанций заявлял, что принять возможность существования антиподов – значит согласиться с тем, что есть люди, ходящие вверх ногами, деревья, растущие наоборот, моря и горы, висящие в воздухе, снег и дождь, падающие вверх.
   Согласно другой, каппадокийско-александрийской школе, Земля – шар, заключенный внутри другого шара – небесной сферы. Последняя вращается вместе со светилами вокруг своей оси и вокруг Земли. В Византии географы использовали глобусы для изображения небесной сферы.
   В Византии развивалась и практическая картография. Византия была крупнейшей морской державой, нужды мореплавания требовали создания пособий для моряков – периплов и лоций. Периплы – это описание морских плаваний вдоль берегов. В них приводились расстояния между портами. С изменением маршрутов обновлялись и периплы.
   Для путешествий по суше были созданы итинерарии. Особо тщательно составлялись итинерарии для паломников к святым местам.
   Византийцы пользовались специальными военными картами и планами.
   Популярными в Византии были труды античного автора Клавдия Птолемея. К ним прилагались карты, имевшие сетку параллелей и разделенные на географические зоны. Их особенность заключалась в том, что ширина географических поясов постепенно увеличилась от 42 до 100 мм. Такая проекция напоминала появившуюся в XVI в. проекцию Герарда Меркатора.
   На европейских географических картах раннего Средневековья были нарушены реальные пропорции. Для удобства изображения очертания суши и морей могли быть изменены. Они были вычерчены без соблюдения масштаба и координатной сетки. Но карты эти имели особенности, которых лишены современные карты.
   На средневековых картах мира были изображены священные и земные исторические места. На них были изображения Рая и библейских персонажей. Там же помещалась Троя и государство Александра Македонского, провинции Римской империи и современные христианские государства. Таким образом, пространство и время совмещались. Картина мира завершалась сценами Конца света, предсказанного в Библии.
   Разные части света, страны и объекты обладали различным, по представлению средневековых жителей, статусом. Были места священные и проклятые. Среди последних жерла вулканов, считавшиеся входом в Геенну огненную.
   Практически все сохранившиеся до сегодняшнего времени образцы западно-европейских карт, изготовленные до 1100 г., можно разделить на 4 группы.
   К первой относятся чертежи, иллюстрирующие предложенное Макробием деление земной поверхности на зоны. Они появляются в рукописях с IX в. Их нельзя назвать картами в полном смысле этого слова.
   Ко второй группе относятся простейшие схематические изображения, часто называемые картами типа Т-О или О-T. Известный тогда мир изображен в виде круга, в который вписана буква Т, разделяющая его на три части. Восток находился в верхней части карты. Вверху находилась Азия, в двух нижних частях – Европа и Африка. На многих картах главные материки названы по именам сыновей библейского Ноя – Сима, Хама и Яфета, которым по разделу Земли после Всемирного потопа достались Азия, Африка и Европа. Иногда вместо их имен даны названия материков, на некоторых картах присутствуют оба названия.
   Чертежи третьей группы похожи на карты типа T-О, но более сложны. Их общий вид сопровождается пояснительными надписями и рисунками. В центре таких карт – Иерусалим.
   Четвертую группу карт средневековой Европы составляли иллюстрации и комментарии к Апокалипсису, написанные в конце VIII в. испанским священником Беатом. На них мир разделен между 12 апостолами.
   Помимо библейских сюжетов на картах изображались мифические земли, монстры и т. п.
   В период Крестовых походов географические представления европейцев расширились. Это было отражено в Герефордской карте мира (около 1275 г.), вычерченной на пергаменте, сделанном из кожи целого быка. Карта помещалась в алтаре Гересфордского кафедрального собора.
   На других картах того времени было показано, как распределяются суша и водные массы обитаемого мира по природным зонам – тропическим, умеренным и полярной. На некоторых показаны пять климатических зон, или климатов Земли, на других – семь. Такие карты получили название «зональных», или «макробиевых». На них Земля шарообразная. Земной шар опоясывался двумя океанами – Экваториальным и Меридиональным.
   Мусульманская география была ограничена рамками Корана. Она базировалась на представлениях о плоской Земле, на которой воздвигнуты горы и плещутся два моря, отделенные друг от друга специальной перегородкой. Арабы называли географию наукой о «почтовых сообщениях» или о «путях и областях». Из-за интенсивного развития астрономии и математики, выводивших географию за пределы Корана, ее стали трактовать как математическую «науку о широтах и долготах». Основателем одной из картографических традиций стал ученый Абу-Зейд Ахмед ибн Сахл ал-Балхи, служивший при дворе персидских владык Сасанидов. Он написал «Книгу земных поясов», которая представляла из себя географический атлас с пояснительным текстом. Карты из этого атласа перешли в сочинения других авторов.
   Эти карты чертились при помощи циркуля и линейки. Геометризм и симметрия преобладали в них над практическими знаниями. Геометрическая правильность очертаний искажала реальные очертания морей и суши. Дороги и реки изображались прямыми линиями. Сеть меридианов и параллелей отсутствовала, хотя в сопроводительных текстах были указания широты и долготы.
   Условно-геометрическая традиция царила в арабской картографии до XIV века.
   В арабских странах проводились исследования по определению размеров земного шара и измерению длины земного градуса. Помимо того, для религиозных нужд требовалось определение географических координат местности. Это было необходимо для строительства мечетей, которые обязательно должны быть ориентированы в сторону Мекки. Точных координат требовала и популярная в то время астрология.
   В арабских астрономических трудах мы находим формулы, позволяющие вычислить координаты местности, таблицы широт и долгот различных мест мира.
   Для арабской картографии было характерно и сугубо религиозное картографирование. Были созданы так называемые «карты киблы», указывавшие правоверным мусульманам направление на Мекку, взор их во время ежедневных молитв, где бы они ни находились, должен был устремляться в том направлении. В центре таких карт было изображение мечети Кааба в Мекке. Вокруг было изображено 12 овалов, 12 михрабов исламского мира. Каждая часть была представлена наиболее известными городами.
   В XIII в. люди поняли, что географические реалии лучше описывать графически, нежели в виде текста. Около 1250 г. монах Матвей Парижский составил дорожные карты Англии и Уэльса. Это были итинерарии, т. е. списки дорожных станций с указанием расстояний между ними, иллюстрациями.
   Наиболее быстро развивалось морское картографирование. Периплы, т. е. описания маршрутов, можно использовать в основном для плавания в виду берегов, чтобы можно было следить за указаниями в документе об очередности портов и расстояний между ними в днях пути. Но для плавания в открытом море нужно знать направления между портами.
   Уже в XII в. у арабов были детальные описания побережий с указанием расстояний и магнитных румбов между пунктами. Позже подобные карты у итальянцев получили название портоланов.
   Такие карты фактически были ключом к заморским рынкам и колониям и обеспечивали своим владельцам богатство. На государственном уровне карты-портоланы были секретными, их свободное обращение исключалось. На испанских кораблях портоланы и навигационные карты должны были храниться прикрепленными к свинцовому грузу, чтобы при захвате судна неприятелем немедленно сброшенные в воду, пошли ко дну.
   Основой карт-портоланов служила роза ветров. Вначале роза ветров была способом деления кругового горизонта. Из розы ветров прочерчивались лучи по числу основных компасных румбов. Сначала было 8 основных ветров, затем 12. Позже число ветров дошло до 32. На периферии карты на лучах основной розы изображались вспомогательные. Роза ветров использовалась для нанесения на карту береговой линии, портов, а также для определения курсового магнитного румба.
   Карты-портоланы первоначально применяли на морских торговых кораблях Италии и Каталонии, они охватывали те участки морей, по которым проходили торговые пути от Фландрии до Черного моря.
   Затем морская картография стала развиваться в Голландии. Хорошо изучив побережье Северной Европы, голландцы создали морской атлас «Зеркало моряка». Его первый том вышел в 1584 г. Голландская Ост-Индская компания составила Секретный атлас, включавший 180 портоланов.
   В 1492 г. Мартин Бехайм в сотрудничестве с художником Георгом Хольцшуером создал первый современный глобус Земли с диаметром около 50 см.
   На нем были нанесены экватор, разделенный на 360 неоцифрованных частей, два тропика, арктический и антарктический полярные круги. Был показан один меридиан, поделенный на градусы. Протяженность Европы составляла 234° вместо 131°.
   Расстояние от западной Европы до Азии было уменьшено с 229° до 126°.
   Глобус Бехайма был последним отражением доколумбовых представлений о мире.
   Даже имея первичные материалы съемок – навигационные описания, портоланы, судовые журналы, картограф-составитель не всегда мог связать их с имеющимися картами. Возможность определять неограниченное количество точек на поверхности Земли картографы получили лишь с изобретением метода триангуляционной съемки (триангуляции).
   Принципы метода триангуляции сформулировал в 1529 г. математик Г. Ф. Регниер. В 1533 г. в своем труде «Книжка» он детально описал метод съемки обширного региона или целого государства с помощью триангуляции.
   Баварский ученый Петр Апиан составлял различные географические карты, среди которых известны карта мира в сердцевидной проекции, карта Европы. В своем сочинении «Космография, или Полное описание всего мира» Апиан дал указания, как определять географические долготы путем измерения расстояний от Луны до звезд.
   Триангуляция для картографических целей впервые была использована фламандским картографом Г. Меркатором, издавшим в 1540 г. карту Фландрии, состоящую из четырех листов. Триангуляционная съемка ознаменовала начало нового этапа в развитии картографии. Теперь появилась возможность оперативного внесения новых сведений в карты с точной локализацией данных. Появились новые картографические проекции. Проекция Меркатора, позволяющая прокладывать курсы судов по прямой линии, до сих пор используется в навигации.
   В начале XVII в. в Нидерландской войне и в Тридцатилетней войне 1618–1648 годов происходили массовые перемещения войск на местности. Для их обеспечения требовалось детальное изучение ландшафта для составления карт. Особое внимание уделялось условиям проходимости местности для больших подразделений пехоты, кавалерии и артиллерии. В связи с этим в обязанность военных инженеров вменялось также делать съемки и рекогносцировку местности в топографических масштабах.
   Поскольку было необходимо, чтобы военные карты имели хорошие измерительные свойства, уже в 1540–1570-х годах на картах, созданных военными инженерами, указывался масштаб. Первой картой, где строго соблюдался масштаб, считается план города Имола, составленный Леонардо до Винчи во время его службы у Чезаре Борджа в 1502–1504 годах.
   Николо Тарталья в своей книге, изданной в 1546 г., отмечал важность угловых измерений для составления военных карт. Он описал компас с визирами, приспособленный для угловых измерений.
   Исследованием отдельных картографических проекций в XVIII в. занимались математики Лагранж и Эйлер. Развитие военной картографии и увеличение объема топографических работ требовали создания математической основы крупномасштабных карт и введения системы прямоугольных координат. Для этого потребовалась новая картографическая проекция. Это привело К. Гаусса к созданию геодезической проекции.
   Современные географические карты – плод тысячелетних трудов людей разных профессий: купцов, моряков, математиков, астрономов, инженеров, географов.

Гидравлический пресс

   Перед инженерами и конструкторами встала задача создать принципиально новое кузнечное оборудование, свободное от указанных недостатков. Научно-техническая мысль пошла по пути конструирования кузнечных машин для обработки металлов давлением статического (неударного) действия. В результате были созданы гидравлические прессы, буквально перевернувшее кузнечное производство.
   Появление гидравлических прессов относится к концу XVIII в. Их работа основана на законе Паскаля, гласящем, что внешнее воздействие на жидкость распространяется равномерно во все стороны. В 1795 г. английский механик Дж. Брама, владелец крупного машиностроительного предприятия в предместье Лондона Пимлико, взял патент на гидравлический пресс, предназначенный для выполнения различных тяжелых работ. Пресс состоял из большого и прочного цилиндра с поршнем внутри. Цилиндр сообщался с нагнетательным насосом. Вода перегонялась в цилиндр, постепенно приподнимая поршень. В процессе работы над прессом изобретатель разрешил ряд сложных технических проблем. Одна из них состояла в обеспечении герметичности между поршнем и стенками цилиндра. При действии поршня вода в больших количествах просачивалась через зазор в другую часть цилиндра, не обеспечивая нужного давления. Эту задачу помог разрешить Браме его сотрудник, будущий известный изобретатель и машиностроитель Г. Модели. Он предложил уплотнение поршня в виде самоуплотняющегося манжета, без которого гидравлический пресс фактически не мог действовать. Для этого Модели поставил кольцеобразный вкладыш из крепкой кожи, выпуклый сверху и вогнутый снизу. При заполнении цилиндра водой под высоким давлением края кожаного манжета раздвигались, плотно прижимаясь к поверхности цилиндра, и закрывали собой зазор.
   Построенный Дж. Брамой пресс вначале использовался для перемещения и подъема тяжелых металлических конструкций. Так, Дж. Стефенсон применил его для поднятия гигантских конструкций строящегося через реку Темзу Британского моста. Каждый пресс воспринимал на себя нагрузку в 1114 тонн. С помощью гидравлического пресса Брамы был спущен на воду крупный пароход «Great Easten». Пресс применяли для разрезания железных полос, вытаскивания плотинных свай, корчевания деревьев и выполнения других работ, требующих сверхмощных механизмов.
   В конце XVIII – начале XIX в. гидравлический пресс применялся в сельском хозяйстве для пакетирования сена, получения виноградного сока, отжима масла.
   В 1797 году Дж. Брама выдвинул идею применения гидравлического пресса для изготовления свинцовых труб путем продавливания металла через кольцевидное отверстие матрицы.
   Однако практическая реализация этого проекта была осуществлена другим инженером, Т. Бурром, построившим в 1820 г. гидравлический пресс для прессования свинцовых труб. На конце плунжера располагался пресс-штемпель, диаметр которого был немного меньше внутреннего диаметра контейнера. Это было необходимо для того, чтобы пресс-штемпель мог свободно перемещаться в контейнере. На торце пресс-штемпеля укреплялась стержневидная оправка или игла, диаметр которой соответствовал внутреннему диаметру прессуемой трубы. Внешний диаметр свинцовой трубы определялся диаметром матрицы. Перед прессованием пресс-штемпель опускался в крайнее нижнее положение, затем в контейнер заливался жидкий свинец. После застывания металла в верхней части контейнера устанавливалась матрица, ввинчивающаяся в специальное гнездо с нарезкой. Процесс прессования начинался с подъема плунжера и связанного с ним пресс-штемпеля, в результате чего в контейнере создавалось гидростатическое давление, значительно повышающее пластичность металла. В результате из контейнера выпрессовывалась бесшовная свинцовая труба с заданными значениями внешнего и внутреннего диаметров. Этот метод получил впоследствии название метода прямого прессования.
   Т. Бурр впервые доказал возможность и перспективность гидравлического пресса для обработки металлов и сплавов. Теперь к гидравлическому прессу приковано внимание металлургов – технологов, стремившихся использовать возможности нового технического средства в различных производствах. К середине XIX в. определились два основных направления применения гидравлического пресса: первое – для продавливания (экструдирования) металла из контейнера пресса через матрицу и второе – для изменения формы металлической заготовки путем воздействия на нее бойков и штампов пресса.
   В основу процесса экструдирования положено свойство металла повышать пластичность при высоком гидростатическом давлении. До 90-х годов XIX в. метод экструзии применяли исключительно для обработки высокопластичных металлов – свинца, олова и их сплавов. Полуфабрикатами для экструдирования служили трубки и прутки. С 70-х годов XIX в. возникает новая область использования экструзионных прессов – электрокабельное производство. В 1879 г. французский инженер Барелл сконструировал гидравлический пресс для наложения свинцовой оболочки на электрический кабель, что позволило соединить страны и континенты телефонными и телеграфными кабелями. Разработанный Барелл ом способ наложения защитной оболочки на электрические кабели сохранился до сих пор.
   Развитие процесса экструдирования побудило инженеров-металлургов перенести полученный опыт на прессование труднодеформируемых металлов. Особенно большой спрос был на трубы из меди и ее сплавов. Впервые проблему прессования медных труб и прутков осуществила в 1893 г. фирма «Троус Коппер Компани», построившая специальный пресс высокого давления. Для прессования применяли нагретую до температуры 850 °C медную заготовку. Ее помещали в вертикальный контейнер гидравлического пресса. Затем сверху в контейнер опускался плунжер, соединенный с гидросистемой пресса, который прошивал заготовку в центре. При этом металл выпрессовывался вверх, образуя короткий полый цилиндр. Так появился обратный метод прессования металла.
   Прессование стало важной областью обработки металлов давлением. С 40–50-х годов XIX в. предпринимались попытки использовать гидравлический пресс для ковочно-штамповочных работ. В 1851 г. гидравлический ковочный пресс экспонировался на Международной промышленной выставке в Лондоне. Этот пресс, снабженный четырьмя гидравлическими цилиндрами, обеспечивал давление в 1500 тонн и предназначался для штамповки небольших предметов малой толщины.
   Начало промышленному применению гидравлических прессов положил английский инженер, директор мастерских государственных железных дорог в Вене Дж. Газвелл. Предприятие было расположено в черте города, вблизи жилых построек, и установка на нем парового молота оказалась невозможной. Газвелл спроектировал пресс, который в 1859–1861 гг. был изготовлен и установлен в железнодорожных мастерских. Этот пресс обслуживался мощной паровой машиной двойного действия с горизонтальными цилиндрами диаметром 1200 миллиметров. Благодаря значительной разнице между диаметрами парового и гидравлического цилиндров, удалось создать высокое давление – 400 атмосфер. Вода насосами накачивалась в рабочий цилиндр пресса, плунжер которого приводил в действие подвижную траверсу с укрепленным на ней верхним бойком или штампом. Движение подвижной траверсы направлялось четырьмя массивными колоннами. Подъем траверсы осуществлялся штангой, связанной с поршнем небольшого гидравлического цилиндра, расположенного над прессом.
   Стол пресса Газвелла был снабжен наковальней, которую при необходимости можно было менять. Управление прессом производилось вручную при помощи рычагов. Пресс мог осуществлять периодическое и непрерывное давление с различной скоростью. Он предназначался для штамповки паровозных деталей.
   Первые построенные Газвеллом гидравлические прессы были мощностью 700, 1000, 1200 тонн. Позже были изготовлены более крупные прессы. Они успешно демонстрировались на Всемирных промышленных выставках в Лондоне (1862 г.) и в Вене (1873 г.).
   Для того чтобы увековечить выдающееся изобретение Газвелла, чертежи его первых прессов были переданы на хранение в консерваторию искусств в Вене.
   Пресс Газвелла предназначался для штамповки деталей. Поэтому во второй половине XIX в. велась работа над созданием специального гидравлического пресса для ковки слитков. Основоположником этого направления стал английский инженер и предприниматель Дж. Витворт. В 1865 г., ознакомившись с работами Газвелла, он применил гидравлический пресс для прессования жидкой стали с целью получения однородного беспузырчатого слитка. Продолжая исследования в области прессования, Витворт стремился использовать гидравлические прессы для получения необходимых полуфабрикатов и готовых изделий непосредственно из слитков.
   В 1875 г. Витворт запатентовал во Франции гидравлический пресс. Он состоял из 4 колонн, укрепленных в фундаментной плите. На верхней части колонн располагалась неподвижная траверса с двумя гидравлическими подъемными цилиндрами. Они перемещали вверх и вниз подвижную траверсу, в нижней части которой был установлен штамп.
   Оригинальность этого изобретения состояла в том, что были соединены подвижная траверса, несущая гидроцилиндр, и приспособление для быстрого подъема, спуска и установки траверсы в нужном положении. Такая компоновка при коротком ходе поршня позволяла обрабатывать изделия различной высоты. В прессе был предусмотрен механизм для поворачивания заготовки, что помогало более равномерно обрабатывать заготовки по всему объему.
   Пресс Витворта впервые был применен для ковки слитков в 1884 г. Тогда ковка орудийных стволов велась при помощи паровых молотов. С появлением пресса Витворта они стали отходить на задний план. Преимущества гидравлических прессов перед паровыми молотами были бесспорны. Так, для ковки орудийного ствола из слитка массой 36,5 тонн на 50-тонном паровом молоте требовала 3 недели работы и 33 промежуточных нагрева слитка. Использование гидравлического пресса для ковки слитка массой 37,5 тонн сократило срок ковки до 4 дней при 15 промежуточных нагревах.
   Прессы Витворта широко применялись не только для ковки слитков, но и в производстве броневых плит, изготовлении стволов артиллерийских орудий, крупных валов. Они выпускались мощностью 2000, 5000 и 10 000 тонн. Крупнейшим был пресс мощностью 14 000 тонн, установленный в 1893 г. на Вифлеемском заводе в США. Для привода этого пресса применялись паровые двигатели мощностью 16 000 л. с. Колонны пресса, поддерживающие верхнюю траверсу, располагались на расстоянии 4,4 м друг от друга. Пресс имел два гидравлических цилиндра диаметром 1270 мм. Ход поршня составлял 1430 мм.
   В конце XIX в. происходила замена тяжелых паровых молотов гидравлическими ковочными прессами. В 1893 г. был демонтирован 125-тонный молот на Вифлеемском заводе в США. Завод Круппа в Эссене заменил 75-тонный паровой молот 2000-тонным прессом. Отказался от 108-тонного молота завод в Терни (Италия), установив вместо него 4500-тонный пресс.
   К концу 20-х – началу 30-х годов XX в. в Германии создаются новые конструкции тяжелых гидравлических прессов. В 1930 г. был построен самый крупный на то время гидравлический штамповочный пресс мощностью 6300 тонна-сил (61,8 МПа) для изготовления авиационных деталей из легких сплавов. В 1931 г. в Германии же были построены два штамповочных пресса мощностью 15 000 тонна-сил (147 МПа). В 1939 г. французские машиностроители строят пресс мощностью 20 000 тонна-сил (196 МПа).
   Среди наиболее важных усовершенствований, повысивших эффективность работы прессов, следует отметить введение в схему привода мультипликатора (от латинского «умножающий», «увеличивающий»). Мультипликатором служил паровой цилиндр. Он устанавливался в верхней части пресса. Его поршень при помощи штока соединялся с гидравлическим цилиндром. Для того чтобы произвести нажатие на поковку, в верхнюю часть мультипликатора впускался пар под давлением 6–10 атм. За счет введения мультипликатора можно было довести рабочее давление до 600 атм.
   Прессы, оснащенные мультипликатором, получили название парогидравлических. Их стоимость по сравнению с чисто гидравлическими, оснащенными насосами и аккумуляторами высокого давления, была значительно ниже. Но эксплуатация парогидравлических прессов сопряжена с большим расходом пара.
   У гидравлического пресса с насосным приводом в отличие от парогидравлического есть возможность осуществлять непрерывный рабочий ход. У гидравлического пресса с аккумулятором сеть, подводящая воду, постоянно находится под высоким давлением (250–300 атм). Установка с мультипликатором имеет более короткую сеть, находящуюся под давлением лишь во время рабочего хода. Это позволило увеличить давление воды до 400–600 атм. Такое высокое давление позволило значительно уменьшить диаметр рабочих цилиндров парогидравлических прессов, сделав их более компактными и дешевыми.
   Интенсивное развития серийного и массового производства автомобилей в 40–50-е годы XX в. вызвало рост удельного веса процессов объемной и листовой штамповки. А применение прессовых кузнечных машин подняло эти процессы на более высокий уровень. На автомобильных и тракторных заводах стала использоваться высокопроизводительная горячая штамповка в многоручьевых штампах. В автомобильной, тракторной, вагоностроительной, судостроительной, авиационной и других отраслях промышленности широкое применение нашла листовая холодная штамповка.
   Распространение штамповки повысило эффективность производства по сравнению с ковкой за счет увеличения производительности и за счет значительной экономии металла.
   В 50-е годы XX в. в СССР были разработаны мощные гидравлические штамповочные прессы. На Уральском заводе изготовили 2 гидравлических пресса усилием 294 МН. Новокраматорский машиностроительный завод (НКМЗ) в 1960 г. выпустил уникальные штамповочные прессы 735 МН. Для их изготовления была применена принципиально новая технология соединения основных элементов пресса: станина и поперечины были собраны из катаных и кованых плит, соединенных электрошлаковой сваркой.
   В 1976 г. НКМЗ изготовил для Франции пресс усилием 637 МН. В его конструкцию были внесены некоторые усовершенствования по сравнению с прессами 735 МН. Они обеспечили большую жесткость конструкции.
   Кроме ковки, гидравлические прессы широко применяются для прессования металлов экструдированием. После создания в 1894 г. А. Диком экструзионного гидравлического пресса высокого давления процесс прессования получил распространение на предприятиях цветной металлургии. Прессование применялось для обработки пластичных металлов и сплавов – меди, латуни, алюминия и его сплавов, магния и его сплавов, медно-никелевых сплавов и других материалов.
   В XX в. прессование является составной частью процессов обработки титана, бериллия, новых легких и специальных сплавов. Процесс прессования через матрицу оказался наиболее экономичным для получения профилей, прутков, проволоки и труб из цветных металлов. Он обеспечивает высокую точность параметров изделий.
   В процессе развития прессового производства создавались новые виды прессов. Стали применяться вертикальные прессы. Хотя они более сложны в эксплуатации и уступают горизонтальным в мощности, у них есть свои преимущества: низкая стоимость, меньшая площадь, возможность изготовления труб с минимальной разностенностью и малого диаметра. Вертикальные прессы имеют большую производительность и меньшие отходы.
   В последние десятилетия процесс прессования применяется для обработки труднодеформируемых материалов – сталей, титановых сплавов, вольфрама и молибдена.

Гидроэлектростанция

   С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.
   Первой электростанцией трехфазного тока была Лаутенская гидроэлектростанция. На ней были установлены два одинаковых трехфазных синхронных генератора. Фазное напряжение при помощи трансформаторов повышалось с 50 до 5000 вольт. Ее электроэнергия использовалась для питания осветительной сети города Хейльбронна, а также ряда небольших заводов и мастерских. Понизительные трансформаторы устанавливались непосредственно у потребителей. Эта первая в мире промышленная установка трехфазного тока была запущена в эксплуатацию в начале 1892 г. Использование энергии вод в этой установке показало возможность использования гидроресурсов, отдаленных от промышленных центров. С тех пор число гидроэлектрических установок все время возрастает. Например, в 1892 г. H. Н. Бенардос предложил организовать электроснабжение Петербурга путем утилизации энергии Невы на специально построенных электрических станциях (мощностью до 20 000 л. с.). В 1893 г. Н. С. Лелявский разработал схему использования гидроэнергии Днепровских порогов. В. Н. Чиколев, пропагандировавший еще в начале 80-х годов XIX в. использование водяных турбин в качестве первичных двигателей электростанций, в 1896 г. совместно с Р. Э. Классоном построил в Петербурге на р. Охта гидроэлектростанцию и линию электропередач трехфазного тока.
   В течение 90-х годов XIX в. гидроэнергия играет все более заметную роль в электроснабжении С каждым годом возрастало число крупных гидроэлектростанций.
   В конце XIX в. были сооружены: Рейнфельдская гидроэлектростанция (Германия, 1898 г.) мощностью 16 800 кВт при напоре воды 3,2 м, Ниагарская (США) мощностью 50 тыс. л. с. при напоре 41,2 м, Жонажская (Франция, 1901 г.) мощностью 11 200 л. с. В начале второго десятилетия XX в. были пущены в ход гидроэлектростанции Аугст-Виллен (Германия, 1911 г.) мощностью 44 тыс. л. с., Кеокук (США, 1912 г.) мощностью 180 тыс. л. с. Качество турбинного оборудования было еще недостаточно высоким, КПД колебался в пределах 0,8–0,84. Несовершенными были формы и конструкции гидросооружений, что объясняется недостаточной изученностью вопросов инженерной гидравлики и гидротехники. Поэтому некоторые ГЭС, построенные в эти годы, в последующем подверглись более или менее серьезной реконструкции.
   В дореволюционной России гидроэлектростанций было мало. Первой была установка на Охтинском заводе в Петербурге мощностью 350 л. с. (1896 г.). Кроме того, действовали ГЭС «Белый уголь» на р. Подкумок (1903 г.) мощностью 990 л. с., напряжением 8000 В, Гиндукушская ГЭС (1909 г.) на р. Мургаб, мощностью 1 590 л. с. Кроме того, действовали несколько более мелких по мощности (Сашнинская, Аллавердинская, Тургусунская, Сестрорецкая и др.). Общая мощность гидростанций дореволюционной России составляла 8000 кВт.
   Рассмотрим основные виды ГЭС.
   Деривационные ГЭС. В них существенная (а иногда и большая) часть напора создается посредством деривационных водоводов, являющихся искусственными сооружениями в виде открытых каналов, лотков, туннелей или трубопроводов. Водяные турбины ставятся на деривационном водоводе. Такие ГЭС подходят для горных рек.
   Приплотинные ГЭС. Они устроены так, что напор в них создается посредством специально сооруженной плотины, которая, подпирая уровень воды, образует верхний бьеф. Здание ГЭС обычно располагается вблизи плотины: вода из водохранилища поступает к турбинам по напорным водопроводам, проходящим через тело плотины, либо под плотиной, либо непосредственно из верхнего бьефа. После использования вода из турбин отводится в русло. Для пропуска избытков воды устраиваются особые водосливные плотины. К этому типу ГЭС относятся ДнепроГЭС и Волжская имени В. И. Ленина.
   На некоторые ГЭС в турбинных блоках сделали отверстия для холостых сбросов паводковых вод и подведения воды к турбинам. Эти ГЭС называются совмещенными. В гидроэлектростанциях встроенного типа агрегаты размещаются в теле бетонной плотины, так что необходимость сооружения особого машинного здания отпадает.
   На современных средних и крупных гидроэлектростанциях, а также на многих мелких ГЭС широко применяются методы автоматики и телемеханики, причем на некоторых ГЭС полностью автоматизированы пуск, регулирование, управление и остановка агрегатов, а также управление затворами гидросооружений и напорных водотоков. Эти операции могут производиться телемеханически, т. е. диспетчерским персоналом пунктов управления. Многие ГЭС работают без персонала, управляются на расстоянии (например, с другой станции каскада либо с диспетчерского пункта). На отдельных автоматизированных ГЭС управление и поддержание нужного режима работы осуществляются при помощи автооператоров, выполняющих свои функции по заранее намеченным для них планам и графикам. На полностью автоматизированных ГЭС, управляемых дистанционно или посредством автооператоров, надзор за оборудованием осуществляется путем периодических инспекторских осмотров ГЭС. При какой-либо аварии подается сигнал дежурному для восстановления нормального режима работы ГЭС.
   Достоинства и преимущества гидроэлектростанций по сравнению с тепловыми электростанциями весьма значительны и состоят прежде всего в том, что ГЭС экономят топливо, рационализируют топливный баланс, содействуют экономическому развитию районов, не обеспеченных достаточными топливными ресурсами. Конструкция агрегатов гидроэлектрических станций проще, чем агрегатов тепловых электрических станций, а процесс производства электрической энергии на гидростанциях значительно менее сложен, чем на тепловых станциях.
   Работа гидроэлектростанции не связана с таким количеством отходов, как работа ТЭС. Строительство гидроэлектростанций приводит к рациональному решению не только энергетической проблемы, но и ряда иных проблем, имеющих большое значение. Среди них– проблемы судоходства, ирригации и мелиорации земель, водоснабжения, рыбного хозяйства и очень важная проблема преобразования природы.
   Опыт эксплуатации первых гидроэлектростанций показал, что они имеют большую маневренность, хорошую надежность работы и малые эксплуатационные расходы, не требуют многочисленного обслуживающего персонала и допускают полную автоматизацию процесса производства электроэнергии с весьма широкими возможностями телеуправления. Современные гидравлические турбины обладают КПД, доходящим до 0,93. Энергия, производимая гидроэлектростанциями, дешевле, чем электроэнергия, доставляемая тепловыми электростанциями.
   В техническом и эксплуатационном отношениях очень важно, что гидроэлектрические установки обладают большой маневренностью. Эта особенность гидроагрегатов имеет существенное значение для крупных энергетических систем, так как резкий прирост нагрузки, в том числе при аварийных сбоях в системе, можно быстро компенсировать включением резервных гидроагрегатов. Таким образом, гидроагрегаты оказались очень удобными для покрытия пиков нагрузки в системах, в которых работают как тепловые, так и гидравлические станции.
   Недостатком гидравлических станций является их «локальность», т. е. возможность эффективного строительства гидростанций только в относительно немногих районах. Эта локальность преодолевается передачей энергии на расстояние электрическим током, однако в некоторых случаях транспорт энергии путем перевозки топлива экономически эффективнее, особенно при применении нефтепроводов и газопроводов. Первоначальные затраты на сооружение ГЭС выше, чем на тепловые электростанции.
   Большим недостатком равнинных ГЭС является отчуждение земель, затопляемых водохранилищем. Постепенно происходит размывание берегов искусственных водоемов, их заиливание, нарушение экологического равновесия в зоне водохранилищ.

Двигатель внутреннего сгорания

   Создатели первых двигателей внутреннего сгорания отталкивались от конструкции паровой машины. Еще в 1860 году французский механик Этьен Ленуар построил газовый двигатель, напоминавший паровую машину. Он работал на смеси светильного газа и воздуха. Для зажигания служили две электрические свечи, ввернутые в крышки цилиндра. Двигатель Ленуара – двусторонний (или, как принято говорить, двойного действия; рабочий процесс происходит с двух сторон поршня) и двухтактный, т. е. полный цикл работы поршня осуществляется за два хода. При первом ходе происходят впуск, воспламенение и расширение смеси в цилиндре (рабочий ход), при втором ходе – выпуск отработавших газов. Впуском и выпуском управляет задвижка-золотник, а золотником – эксцентрик, смонтированный на валу двигателя.
   В отличие от паровых двигателей, газовые двигатели не требовали разведения пара, обслуживать их было сложно. Но масса нового двигателя оставалась почти такой же, как и у паровой машины. Единица выработанной мощности двигателя обходилась в 7 раз дороже, чем у паровой машины. Только половина теплоты сгоревшего газа совершала полезную работу, т. е. коэффициент полезного действия двигателя составлял 0,04. Остальное уходило с отработавшими газами, тратилось на нагрев корпуса и отводилось в атмосферу. Когда частота вращения вала достигала 100 об/мин, зажигание становилось ненадежным, двигатель работал с перебоями. На охлаждение расходовалось до 120 м3 воды в час. Температура газа доходила до 800 °C. Перегрев вызывал заедание золотника. Несгоревшие частицы смеси засоряли каналы впуска-выпуска.
   Причина низкой производительности двигателя заключалась в самом принципе его действия. Давление воспламененной смеси не превышало 5 кг/см2, а к концу рабочего хода снижалось втрое. Одноцилиндровый двигатель объемом 2 л при таком давлении, частоте вращения вала 100 об/мин и КПД 0,04 мог развивать мощность не более 0,1 кВт. Другими словами, ленуаровский двигатель был в тысячу раз менее производителен, чем двигатель нынешнего автомобиля.
   Сделать газовый двигатель более эффективным удалось в 1876 году служащему коммерческой фирмы Николаю-Августу Отто из Кёльна совместно с Евгением Лангеном.
   Полученный Отто патент был в 1889 году аннулирован, так как четырехтактный цикл якобы обосновал ранее француз Л. Бо-де-Роша. Лишь посмертно заслуги Отто признала мировая техническая общественность, цикл назвали его именем.
   Наблюдая работу газового двигателя, Отто пришел к выводу, что сможет добиться более производительной работы, если будет зажигать смесь не на середине хода поршня, а в его начале. Тогда бы давление газа при сгорании смеси действовало на поршень в течение всего хода. Для наполнения цилиндра смесью до начала хода Отто поступил следующим образом: вращая маховик вручную, он наполнил цилиндр и включил зажигание лишь в тот момент, когда поршень вернулся в исходное положение. Маховик резко «взял» обороты, а до этого сгорание смеси задало ему лишь слабый толчок. Отто не придал значения тому, что смесь была сжата перед зажиганием, он считал улучшение процесса результатом продолжительного расширения смеси в процессе сгорания.
   Отто понадобилось 15 лет, чтобы сконструировать экономичный двигатель с КПД, равным 0,15. Двигатель назвали четырехтактным, так как процесс в нем совершался в течение четырех ходов поршня и соответственно двух оборотов коленчатого вала. Золотник в нужный момент открывал доступ в цилиндр от запальной камеры, где постоянно горел газ. Происходило зажигание смеси. Золотниковое распределение и зажигание горелкой не применяются в современных двигателях, но цикл Отто полностью сохранился до наших дней. По этому принципу работает подавляющее большинство автомобильных двигателей.
   Итак, при первом такте поршень удаляется от исходной «мертвой точки» – головки цилиндра, создавая в нем разрежение, при этом засасывается приготовленная особым прибором (карбюратором) горючая смесь. Выпускное отверстие закрыто. Когда поршень достигает нижней «мертвой точки», закрывается и впускное. При втором такте закрыты оба отверстия. Поршень, толкаемый шатуном, идет вверх и сжимает смесь. Третий такт – рабочий ход. В начале его происходит зажигание сжатой смеси. Движение поршня через шатун преобразуется во вращение коленчатого вала. Оба отверстия закрыты. Давление в цилиндре постепенно уменьшается до атмосферного. При четвертом такте маховик, получив импульс движения, продолжает вращаться, шатун толкает поршень и вытесняет отработавшие газы в атмосферу через открывшееся выпускное отверстие, впускное закрыто.
   Инерции маховика хватает на то, чтобы поршень совершил еще три хода, повторяя четвертый, первый и второй такты. После них вал и маховик снова получают импульс. При пуске двигателя первые два такта происходят под действием внешней силы. Во времена Отто и еще в течение полувека маховик проворачивали вручную, а теперь его вращает электродвигатель – стартер. После первых рабочих ходов стартер автоматически отключается и двигатель работает самостоятельно.
   Впускное и выпускное отверстия открывает и закрывает распределительный механизм. Своевременное воспламенение смеси обеспечивает система зажигания. Цилиндр может быть расположен горизонтально, вертикально или наклонно, процесс работы двигателя от этого не меняется.
   К недостаткам двигателя Отто относят его тихоходность и большую массу. Увеличение числа оборотов вала до 180 в минуту приводило к перебоям в работе и быстрому износу золотника. Давление в цилиндре требовало мощного кривошипного механизма и стенок цилиндра, поэтому масса двигателя достигала 500 кг на 1 кВт/ч. Для размещения всего запаса газа нужен был огромный резервуар. Все это предопределило неудачу: газовый двигатель Отто, так же как и первый его вариант, был непригоден для установки на автомобиль, однако получил широкое распространение в стационарных условиях.
   Двигатель внутреннего сгорания стал пригодным для применения на транспорте, после того как изобрели жидкое топливо, он приобрел быстроходность, компактность и легкость.
   Наибольший вклад в его создание внесли технический директор завода Отто в Дойце Г. Даймлер и его ближайший сотрудник В. Майбах, позднее основавшие собственную фирму.
   Поначалу Даймлера увлекало конструирование машины. Потом возникла мысль о постройке второго, третьего вариантов машины, исходя из опыта работы над предыдущей, и о ее продаже.
   Но прежде чем конструировать и строить самодвижущуюся повозку, нужно было создать для нее двигатель.
   Первый двигатель Даймлера годился и для транспортного, и для стационарного применения. Работал на газе и на бензине. Все позднейшие конструкции Даймлера рассчитаны исключительно на жидкое топливо. Скорость вращения вала двигателя, обеспечиваемую, в частности, интенсивным воспламенением смеси, Даймлер справедливо считал главным показателем работы двигателя на транспортной машине. Скорость вращения вала двигателя Даймлера была в 4–5 раз выпе, чем у газовых двигателей, и достигала 450–900 об/мин, а мощность на 1 л рабочего объема – вдвое больше. Соответственно могла быть уменьшена масса. Появился закрытый картер (кожух) двигателя, заполненный смазочным маслом и защищавший подвижные части от пыли и грязи. Охлаждению воды в окружающей двигатель «рубашке» способствовал пластинчатый радиатор. Для пуска двигателя служила заводная рукоятка. Теперь имелось все необходимые составляющие для создания легкого самодвижущегося экипажа – автомобиля.
   Первые двигатели Бенца имели скорость вращения вала, не превышающую 400 об/мин. Кривошипный механизм был открытым, как у стационарных двигателей. Электрическое зажигание в двигателе было сходным с зажиганием современных двигателей.
   Было сложно наращивать мощность двигателя: увеличение диаметра цилиндра влекло за собой возрастание сил, действующих на его стенки и на детали кривошипного механизма. А при увеличении длины хода поршня росли размеры кривошипа, и цилиндр было трудно разместить на автомобиле. Все это влекло за собой увеличение массы двигателя.
   И у конструктора возникла мысль увеличить количество цилиндров. Даймлер сконструировал двухцилиндровые (V-образными) двигатели. В 1891 г. он построил первый 4-цилиндровый двигатель.
   Количество цилиндров обеспечивало не только компактность двигателя при увеличении его мощности, но и обеспечивало плавность хода. Вместе с тем возрастала сложность конструкции двигателя.
   К концу XIX в. 1-, 2-, 4-цилиндровые двигатели выпускались многими фирмами. Каждая фирма стремилась сделать свои цилиндры взаимозаменяемыми. Это позволило бы наладить массовое производство и упростить замену в случае повреждения. Головку цилиндра пытались сделать съемной, но трудно было обеспечить герметичность зазора. Тогда цилиндры стали отливать заодно с головкой, а для доступа к клапанам делали лючки с пробками. Рубашка водяного охлаждения была съемной.
   Важную роль в двигателе играла система распределения, наполняющая цилиндры горючей смесью и очищающая их от газов. У первых двигателей впуск смеси в цилиндр осуществлялся автоматическим клапаном на стержне. Он открывался благодаря разрежению в цилиндре при впуске смеси, а все остальное время удерживался в закрытом положении пружиной и давлением в цилиндре. Выпускной клапан управлялся при помощи эксцентрика. Увеличение числа цилиндров привело к созданию кулачкового вала с приводом от коленчатого вала. В нужный момент кулачки приподнимали стержни клапанов, а при дальнейшем движении кулачка пружина удерживала клапан закрытым.
   Хотя автомобильный двигатель можно охлаждать и потоком встречного воздуха, более эффективным оказалось водяное охлаждение. Долгое время были популярны змеевиковые радиаторы, часто опоясывавшие капот двигателя. В 1901 г. на «мерседесе» впервые был установлен сотовый радиатор с большой поверхностью охлаждения. В конце XIX в. появились водяные насосы, вращавшиеся от коленвала. Для продувки воздуха через радиатор применили радиатор.
   Смазка двигателя осуществлялась при помощи разбрызгивания. Черпачки на нижних головках шатунов взбалтывали масло в картере и смазывали им цилиндры и подшипники.
   Для распыления бензина применялись хитроумные приспособления, такие как карбюратор Маркуса. Его работа напоминала процесс стряхивания краски со щетки. А во взбалтывающем карбюраторе Бенца воздух проходил через бензин в баке. По мере расходования бензина смесь становилась беднее.
   В конце концов остановились на карбюраторе, работавшем по принципу пульверизатора. Пульверизационный карбюратор Бенца и Майбаха состоял из поплавковой и смесительной камер. В поплавковой камере автоматически поддерживался постоянный уровнень топлива. Благодаря разрежению бензин выходил из жиклера смесительной камеры распыленной струей. Схожая конструкция применяется и до сих пор.
   Большие сложности были с зажиганием. На первом автомобиле Бенца были установлено ленуаровское зажигание, и он работал на ровной дороге в сухую погоду с запасом сухих элементов. Динамо-машина при малых оборотах не работала, поэтому для запуска двигателя было необходимо сильно раскрутить вал или разогнать автомобиль. Кислотный аккумулятор был тяжелым, заряд был малым.
   До конца XIX в. на «Даймлерах» устанавливались платиновые калильные трубки, несмотря на их дороговизну и пожароопасность. Позже Даймлер применил на своих автомобилях магнитоэлектрическую машину инженера Боша. Она вырабатывала ток благодаря движению якоря в электрическом поле между полюсами магнита. В момент наибольшей силы тока электрическую цепь разрывала тяга, соединенная с якорем. Разрыв происходил в камере сгорания, вызывая искру, воспламенявшую смесь. Машину Боша назвали «магнето высокого напряжения».
   Пуск двигателя имел не меньшее значение, чем зажигание. Вращая рукоятку, нужно было преодолевать давление в цилиндрах двигателя. Обратные удары рукоятки травмировали руки водителей. Конструкторы принимали меры к тому, чтобы заменить рукоятку более удобным устройством. Простым и надежным оказался электромотор с шестеренкой, сцепляемой в нужный момент с зубчатым венцом на маховике двигателя. Маховик начинал вращаться и запускал двигатель. Стартер изобрел американский конструктор Ч. Кеттеринг.
   Особую роль в развитии двигателей внутреннего сгорания сыграл немецкий инженер Рудольф Дизель. В 1892 г. он получил патент на двигатель нового типа, общие принципы работы которого изложил в брошюре «Теория и конструкция рационального теплового двигателя», вышедшей в 1893 году.
   Предложение Дизеля сводилось к осуществлению в полости двигателя высокого сжатия воздуха с целью повышения его температуры выше температуры воспламенения горючего. Поданное в полость двигателя в конце хода сжатия горючее воспламенялось от нагретого воздуха и нагнетаемое постепенно, осуществляло процесс подвода тепла без изменения температуры в соответствии с циклом Карно. Произведя тепловой расчет своего двигателя мощностью 100 л. с., Дизель получил в конце сжатия температуру 1 073 °C, давление 250 атм и КПД, равный 0,73.
   Предлагая свой рациональный двигатель, Дизель считал, что широкое распространение его «будет противодействовать развитию централей», что мелкая промышленность будет размещаться вне больших городов, не будет «…централизованной в городах без света, без воздуха и без достаточного пространства…». Работа Дизеля получила широкий отклик среди ученых-теплотехников. Многие отрицательно высказывались об идее Дизеля. Но наряду с отрицательными отзывами имелось и восторженные, принадлежавших весьма авторитетным ученым, среди которых были К. Линде, Г. А. Цейнер и М. Шредер.
   Положительные отзывы о работе Дизеля помогли ему заинтересовать два крупных предприятия: фирму Круппа и Общество аугсбургских машиностроительных заводов. В 1893 г. были подписаны договоры, по которым фирма Круппа брала на себя финансирование разработки нового двигателя; Аугсбургский завод предоставлял помещение и оборудование в одном из своих цехов.
   Первый двигатель, отличавшийся рядом необычных свойств, был готов летом 1893 г. Он должен был работать на угольной пыли, вводимой в полость двигателя насосом в конце хода сжатия, когда давление в полости достигало 90 атм, а температура – 800 °C. Охлаждение двигателя отсутствовало, так как предполагалось, что горение не вызовет большого повышения температуры, а эффективность цикла будет настолько велика, что лишнее тепло будет успешно эвакуироваться из полости двигателя с выхлопными газами. Двигатель был запущен от трансмиссии и взорвался, чуть не покалечив изобретателя. В этом же месяце был готов второй двигатель. Дизель, учтя неудачу с первым опытным образцом, отказался от угольной пыли и применил водяное охлаждение. В этом двигателе удавалось получить лишь одну вспышки при впрыскивании бензина. В августе испытанию подвергся третий опытный двигатель, который уже делал несколько оборотов на холостом ходу. Испытания показали несовпадение результатов с предварительными расчетами Дизеля.
   Дизель с исключительным остроумием вышел из казалось бы безвыходного положения. В ноябре 1893 г. он получил новый патент (являющийся дополнением к основному патенту), который предусматривал метод регулирования мощности двигателя «…путем видоизменения характера кривой процесса сгорания…». При этом, несмотря на снижение давления в конце сжатия с 90 до 35–40 атм, в связи с чем температура в конце сжатия достигала величины 600 °C вместо 900 °C, в конце сгорания температура повышалась до 1500 °C. Это потребовало интенсивного охлаждения стенок цилиндра.
   Упорные работы над усовершенствованием нового двигателя продолжались. Двигатель 1894 г. работал только на холостом ходу. Двигатель 1895 г. с распыливанием керосина от компрессора и хорошим водяным охлаждением был первым опытным двигателем, способным работать с небольшой нагрузкой. Только в 1896 г. испытание нового опытного образца принесло успех. Но в этом образце двигателя был сделан ряд отступлений от принципов, изложенных в брошюре Дизеля в 1893 г.: вместо угольной пыли – керосин, вместо насоса – компрессор, сжатие вместо 35 атм – 90 атм, вместо полного отсутствия охлаждения – интенсивное водяное охлаждение. Испытание опытного образца 1896 г. было проведено в начале 1897 г. М. Шредером и показало, что КПД двигателя не достиг расчетной величины: индикаторный КПД оказался равным 33,4 %, что при сравнительно низком механическом КПД (75,0 %) давало экономический КПД 25,0 %.
   В то время КПД лучших газовых двигателей достигали 24,0 %, но они были связаны с источником газа (газогенератор, домна) и не могли работать на транспортных установках. КПД калоризаторных двигателей низкого сжатия не превышал 16,0 %.
   После демонстрации на Парижской выставке 1900 г. двигателя Дизеля, усовершенствованного Аугсбургским заводом и получившего впоследствии название «дизель», ряд заводов приступили к «дизелестроению». Вначале дизели получили распространение в силовых установках небольших заводов и фабрик, но тенденция капиталистической концентрации стала предъявлять требования к повышению их мощности. Завод Зульцера, сконструировав двухтактный двигатель в первом десятилетии XX в., довел его мощность до 2400 л. с. Кроме Германии, дизели стали строить в Англии, Дании, Австро-Венгрии.
   Сам Дизель вынужден был до конца своей жизни (1913 г.) защищать свои патентные права в ряде стран, так как горение при постоянном давлении (правда, без высокого сжатия), к которому он постепенно пришел, было запатентовано рядом авторов в разных странах.
   У дизеля есть существенные преимущества по сравнению с карбюраторным двигателем: он не нуждается в электрическом зажигании, может работать на более тяжелом и дешевом топливе. Расход топлива в дизеле в 1,5 раза меньше, чем у карбюраторного двигателя. Экономия достигается за счет более высокой степени сжатия.
   Недостатками дизеля является применение дорогого насоса и форсунок. Высокое давление топлива требовало повышения прочности, а следовательно, и массы конструкции. Тяжелые детали ограничивали частоту вращения вала дизеля. В холодную погоду завести дизель было сложно. Дизели оказались более шумными, чем карбюраторные двигатели.
   Все это ограничивало применение дизельных двигателей на легковых автомобилях. Но в конце 20-х – начале 30-х годов они устанавливались на автобусах и большегрузных автомобилях. Позже, во второй половине 30-х годов, в СССР был разработан быстроходный двигатель В-2, для средних танков Т-34 и тяжелых КВ и ИС.
   Конструкции карбюраторного и дизельного двигателей сложились еще в начале прошлого века и за это время не претерпели существенных изменений. Появившиеся в середине XX в. двигатели Ванкеля так и не смогли вытеснить их. Поэтому и в XXI век человечество въехало на автомобилях, приводимых в движение двигателями внутреннего сгорания.

Дирижабль

   Первые попытки создания управляемых аэростатов появились вместе с самим аэростатом в XVIII веке. Они были основаны на аналогии плавания аэростата и воздушного судна. Для управления горизонтальным движением аэростата предлагалось использовать паруса, руль и весла. Все эти попытки постигла неудача.
   Впоследствии удалось достичь некоторых результатов в управлении аэростатами с помощью паруса. Для этого применялись специальные устройства, имитировавшие тормозящее влияние воды на надводные суда. Одно из таких устройств, гайдроп, представляло собой тяжелый канат длиной до двухсот метров. При спущенном гайдропе возникает дополнительное сопротивление вследствие трения каната о землю. Это снижало скорость аэростата относительно скорости ветра, и установленный на аэростате парус начинал раздуваться. Меняя положение паруса, можно было добиться некоторого изменения направления полета. Применять гайдроп можно было только при полете над ровной местностью, например над водой. При полете над лесом или населенными пунктами он мог зацепиться за препятствие и сыграть, что нежелательно, роль якоря.
   Вскоре после полета первого монгольфьера была предпринята попытка управления аэростатом при помощи реактивной струи сжатого воздуха, выходящего через отверстие в оболочке. Но изобретателей постигла неудача – аппарат сгорел во время наполнения газом. В 1801 году венский инженер Кайзерер предлагал использовать для передвижения аэростата дрессированных орлов.
   Огромное влияние на развитие управляемых аэростатов оказал проект французского военного инженера Менье. Он представил его на рассмотрение Французской академии наук в 1784 году. Менье предложил использовать вместо сферической формы оболочки форму удлиненного эллипсоида вращения. Это позволяло уменьшить сопротивление при движении. Для поддержания неизменяемости формы аэростата его оболочка делалась двойной. Во внутренней полости находился водород, а пространство между внутренней и внешней оболочками заполнялось воздухом. Эта воздушная полость получила название баллонета. Количество воздуха в баллонете зависит от изменения плотности водорода. При возрастании плотности в баллонет нагнетают дополнительный воздух, при уменьшении – излишек воздуха выпускают. Таким образом, форма остается неизменной. Гондола крепилась к специальному поясу, пришитому вокруг поверхности оболочки.
   В качестве движителя Менье предложил использовать винты, вращать которые должны были восемьдесят человек. Длина аэростата составляла восемьдесят метров, диаметр – сорок два. Постройка этого воздушного корабля так и не состоялась.
   Теоретические исследования и практический опыт, накопленный первопроходцами управляемого воздухоплавания, привели их к выводу: управляемость аэростата можно обеспечить, поместив источник энергии внутри аэростата.
   Паровой двигатель был изобретен практически одновременно с аэростатом. Но долгое время его удельная масса составляла около ста килограммов на одну лошадиную силу. Это делало невозможным применение на аэростате двигателя, обеспечивавшего аппарату скорость, превышавшую скорость ветра.
   В 1851 году французу А. Жиффару удалось построить паровой двигатель весом 45 килограммов и мощностью 3 лошадиные силы. Он предназначался для аэростата, созданного годом позже.
   Первый полет состоялся 23 сентября 1852 года. Жиффар поднялся на высоту 1800 метров и затем благополучно приземлился. Во время полета аэростат двигался перпендикулярно направлению ветра со скоростью 12 км/ч. Дату этого полета принято считать началом эры управляемого воздухоплавания, а сам аппарат – первым дирижаблем.
   Первые дирижабли были весьма беспомощными в полете. Даже слабый ветер становился для них серьезным препятствием. Отсутствие мощного двигателя, позволявшего развивать скорость, превышающую скорость встречного ветра, тормозило развитие дирижаблестроения.
   Главной особенностью дирижабля, сконструированного немецким инженером П. Генлейном, было использование газового двигателя системы Ленуара. Топливом был газ, наполнявший оболочку аэростата. Мощность двигателя – 6 л. с. При помощи винта дирижабль развивал скорость до 18,7 км/ч.
   В 1883 году французы, братья Тиссандье, построили аэростат, на котором установили электродвигатель мощностью 1,5 л. с. Максимальная скорость дирижабля составляла более 14 км/ч.
   В 1884 году французы Ренар и Кребс построили управляемый аэростат, который даже при наличии ветра мог совершать полет по замкнутому маршруту. Передняя часть его оболочки была утолщенной для уменьшения аэродинамического сопротивления. На нем был установлен электродвигатель мощностью 9 л. с. и весом 96 кг. Вес батарей – 400 кг. В передней части гондолы помещался двухлопастный винт диаметром 7 метров, а в задней – вертикальный руль поворота и горизонтальный руль высоты. При их помощи можно было изменять курс корабля. Его назвали «Франция». В первом полете – 9 августа 1884 года – дирижабль за 23 минуты пролетел 8 км. Это был первый по-настоящему управляемый воздушный корабль. Но его максимальная скорость – 21,6 км/ч была недостаточной для практического использования.
   В 1896 году на дирижабле «Германия» конструкции Вельферта впервые был установлен бензиновый двигатель. Во время первого же полета корабль взорвался. Несмотря на первую неудачу, в воздухоплавании все же стали применяться бензиновые двигатели.
   В 1897 году австриец Шварц построил в Германии первый цельнометаллический дирижабль. Его оболочка состояла из алюминиевых листов толщиной 0,2 мм, прикрепленных к жесткому каркасу из алюминиевых же профилей. Гондола тоже была из алюминия и жестко соединялась с оболочкой. В ней поместили бензиновый двигатель мощностью 12 л. с., вращавший четыре винта. Два из них находились по бокам гондолы и служили одновременно для поворотов и перемещения вперед, один размещался позади гондолы и должен был толкать аппарат вперед. Четвертый – подъемный с вертикальной осью – разместили под гондолой. Первый полет состоялся 3 ноября 1897 года. На высоте 250 м отказал двигатель. Пилоты выпустили избыточное количество газа, дирижабль начал быстро снижаться и при ударе о землю взорвался. Аэронавту удалось спастись. Дирижабль Шварца стал первым управляемым жестким аэростатом и прообразом будущих дирижаблей с жесткой системой.
   1900 год ознаменовался появлением первого аппарата конструкции Ф. Цеппелина. С его именем связано целое направление в развитии управляемого воздухоплавания. На Боденском озере в Германии Цеппелин построил гигантский эллинг. Он поддерживался на воде при помощи 80 понтонов. Именно там в 1900 году был построен первый «цеппелин». У него был алюминиевый каркас, разделенный шпангоутами на 17 отсеков. В каждом из них размещался баллон, наполненный водородом. Общий объем баллонов был около 11 300 м3. Длина оболочки составляла 128 м, диаметр – 11,6 м. Под ней размещалась балка длиной 56 м. В каждой находился бензиновый двигатель мощностью 16 л. с. Четыре винта попарно устанавливались по обеим сторонам оболочки. Управлялся дирижабль при помощи вертикальных рулей в носовой и кормовой частях корабля и горизонтального руля в кормовой части. Было сделано три полета с максимальной скоростью 29 км/ч.
   Этот дирижабль был самым крупным аэростатом к тому времени, что достигалось благодаря жесткому и упругому каркасу. Размещение подъемного газа в изолированных баллонах повышало надежность корабля А внешняя оболочка препятствовала утечке газа. Удачно были размещены винты, надежная конструкция клапанов и горизонтального руля. В дальнейшем эта конструкция была признана наиболее рациональной и перспективной.
   На рубеже XIX–XX веков дирижаблестроение вплотную подошло к практическому использованию управляемых аэростатов. Из-за отсутствия других видов воздушного транспорта дальнейшее их использование рассматривалась как одна из важнейших транспортных и оборонных задач. В начале XX века дирижаблестроение переживало период расцвета. Этому в значительной мере способствовали успехи в разработке бензиновых двигателей.
   В 1902 году под руководством инженера Жюлио был построен дирижабль «Лебоди». Мягкая оболочка снизу была укреплена жесткой платформой из стальных труб. В задней части платформы находился киль с рулем направления и горизонтальные поверхности для управления кораблем в вертикальной плоскости. В гондоле установлен бензиновый двигатель мощностью 40 л. с. С обеих сторон на ней крепились два двухлопастных винта, а в нижней части – пирамидальная конструкция из стальных труб для защиты винтов от удара о землю при спуске. Этот дирижабль преодолевал расстояние более 100 км при скорости до 40 км/ч. Он был первым воздушным кораблем, который можно было использовать в практических целях.
   Совершенствовались и аппараты мягкой системы. Во Франции был сконструирован «Клеман Баяр», установивший в 1909 году рекорд высоты для управляемых аэростатов – 1500 метров. Наиболее удачную конструкцию разработал немец Парсеваль. В оболочке размещались два баллонета, в которые при помощи вентилятора и шланга подавался воздух. Стабилизаторами служили две горизонтальные и одна вертикальная поверхности в хвостовой части корабля. Воздушный винт состоял из четырех прямоугольных прорезиненных кусков материи, во внешние части которых были вшиты грузы. В нерабочем состоянии мягкие лопасти свободно свисали, а при вращении распрямлялись под воздействием центробежной силы и принимали форму воздушного винта. Такой винт был легче обычного, удобнее при транспортировке и не представлял опасности для оболочки. В 1907 году этот дирижабль развил скорость 55,8 км/ч, совершив беспосадочный полет продолжительностью более 11 часов.
   В то же время к созданию нового корабля приступил и Цеппелин. При первом же полете дирижабль сильно повредился и был разобран. Неудача не остановила конструктора. Его следующая модель поражала своими размерами: длина – 128 метров, диаметр – 11,7 метров. Два двигателя мощностью 85 л. с. каждый приводили в движение четыре винта. Две подвешенные на рессорах гондолы соединялись коридором. Этот корабль побил мировой рекорд скорости и грузоподъемности. В 1910 году совершил первый полет новый дирижабль – «Германия», длиной 148 метров и диаметром 14 метров. Он был первым специально предназначенным для пассажирского сообщения.
   Лишь в 1907 году начались работы над дирижаблем для российской армии. Первым дирижаблем, построенным в России, стал «Учебный». Летом 1909 года был построен «Кречет», который уже мог конкурировать с лучшими зарубежными образцами. До войны были также построены «Голубь», «Альбатрос», «Сокол» и другие. В 1911 году в Киеве совершил первый полет дирижабль «Киев». К началу Первой мировой войны парк российских дирижаблей насчитывал 15 аппаратов – 7 отечественных и 8 зарубежных. Но к тому времени они уже успели устареть. В 1915 году начались испытания корабля «Гигант». В стране были в то время квалифицированные кадры конструкторов и воздухоплавателей.
   С началом Первой мировой войны выпуск дирижаблей в Германии и в других странах Европы возрос. Дирижабли военных лет представляли собой мощное средство воздушного сообщения, разведки и нападения. Только немецкие дирижабли совершили во время войны около 1000 боевых вылетов.
   Резко возросли и летные характеристики дирижаблей. Скорость выросла до 122 км/ч, высота подъема достигла 7650 метров. Максимальная продолжительность полета составляла 96 часов, полезная нагрузка – 51 000 кг. Лучшим самолетам того времени они уступали только в скорости. Значительно возросли надежность и безопасность полета дирижаблей.
   Во время войны всего было построено 416 дирижаблей. Опыт, накопленный за годы войны, позволил перейти к мирному использованию дирижаблей. В Германии были построены дирижабли «Бодензее» и «Норденштерн». Они предназначались для регулярных пассажирских перевозок. Это были комфортабельные корабли, развивавшие скорость до 130 км/ч.
   В 1927 году совершил первый полет дирижабль «Граф Цеппелин». По комфортабельности он не уступал океанским лайнерам. Пассажиры помещались в двухместных каютах, к их услугам были буфет, кухня, умывальные комнаты, даже почта. Дирижабль летал на трансатлантической трассе. За время своей работы «Граф Цеппелин» совершил 143 перелета и перевез 13 110 пассажиров, преодолев при этом расстояние около 1 700 000 км. Самой яркой страницей его истории стал кругосветный перелет по маршруту Фридрихсгафен – Токио – Лос-Анджелес – Лейкхерст (близ Нью-Йорка) – Фридрихсгафен. Он длился 20 суток (из них летное время – 12,5 суток). За это время корабль пролетел почти 35 000 км. Перелет показал, что жесткие дирижабли могут использоваться на линиях регулярного сообщения любого направления и протяженности.
   20-е годы прошлого века ознаменовались попытками достичь на дирижабле Северного полюса. В 1925 году известный норвежский полярный исследователь Руал Амундсен купил у итальянского правительства дирижабль, названный «Норвегия». 11 мая 1926 года «Норвегия», на которой кроме Амундсена был конструктор дирижабля Нобиле и еще 13 человек взлетел со Шпицбергена и 12 мая достиг Северного полюса. Два дня спустя он приземлился на Аляске.
   В 30-е годы в Великобритании и США создавались гигантские дирижабли для трансокеанских перелетов. На некоторых из них, например на «Акроне» и «Меконе», в качестве несущего газа использовался гелий. Гелий в четыре раза тяжелее водорода, но, в отличие от последнего, не воспламеняется. В марте 1936 года поднялся в воздух крупнейший в истории дирижабль «Гинденбург». Его длина была 250 м, а объем – 200 000 м3. Он совершил 21 перелет через Северную и 16 перелетов через Южную Атлантику. 6 мая 1937 года перед швартовкой в Лейкхерсте «Гинденбург» взорвался. При катастрофе погибло 35 из 97 человек, находившихся на борту. Значительно позже было установлено, что катастрофа была вызвана взрывом мины, установленной одним из членов экипажа. Эта и другие аварии дирижаблей привели к тому, что постепенно от использования дирижаблей отказались.
   Научно-технический уровень того времени не позволил дирижаблям раскрыть все свои достоинства. Кроме того, на первый план уже вышли самолеты. Дирижабли состязаться с самолетами не могли.
   В последние десятилетия наблюдается возрождение интереса к дирижаблям. Это вызвано, в частности, тем, что для современных самолетов требуются огромные дорогостоящие аэродромы, что они расходуют огромное количество топлива. Грузоподъемность самолетов ограничена. Отказ двигателей самолета приводит к катастрофе, в то время как на дирижаблях это не является неизбежным.
   Появление новых материалов позволяет значительно облегчить дирижабли. Производство безопасного, в пожарном отношении, гелия стало значительно дешевле. А применение современных двигателей и компьютеров существенно облегчит управление кораблем. Все это позволяет надеяться, что в ближайшем будущем полеты на новых дирижаблях станут удобными и безопасными.

Доменная печь. Чугун

   Примерно во втором тысячелетии до н. э. человек овладел искусством получения железа из руды. Сначала для этого использовались костры, позже – специальные плавильные ямы – сыродувные горны. В них помещались руда и древесный уголь. Необходимый для горения воздух первоначально подавался естественной тягой, а затем при помощи мехов. В результате получалось железо в виде тестообразной массы с включениями шлака и несгоревших остатков древесного угля. Из-за низкого содержания углерода сыродувное железо было мягким, изделия из него легко тупились, гнулись, оно не закаливалось.
   Постепенно процесс выплавки железа совершенствовался: улучшалась форма горнов, повышалась их мощность. Горны превратились в небольшие печи – домницы (от древнерусского дъметь – дуть). Развитие домниц привело к появлению небольших доменных печей. Часто вместо железа в доменных печах получали высокоуглеродистый сплав, не поддававшийся ковке из-за повышенной хрупкости. Его считали браком. В разных языках сохранились названия, свидетельствующие об отношении к чугуну. В Англии его называли «pig-iron» – свиное железо, русское название произошло от «чушка» – свинья.
   Отношение к чугуну изменилось после открытия кричного передела. Он осуществлялся в кричном горне. На слой горящего древесного угля помещали чушки чугуна. Плавясь, чугун стекал вниз и, проходя через окислительную среду, скапливался на поду горна. Там он под окислительным воздействием железистого шлака дополнительно обезуглероживался. В результате образовывалась крица – твердая губчатая масса железа с низким содержанием углерода, кремния, фосфора и серы. После извлечения крицы из горна ее проковывали с целью уплотнения и избавления от шлака.
   Позже высокие литейные свойства чугуна стали использоваться для производства артиллерийских орудий, ядер, колонн.
   До II половины XVIII в. чугун выплавляли непосредственно из руды в доменных печах. Позже его стали производить из литейного чугуна и лома в небольших доменных печах. Такие печи стали прототипами появившихся во второй половине XVIII в. вагранок.
   Из-за постепенного истощения запасов леса для производства древесного угля требовалось новое топливо для выплавки металла.
   В 1621 г. англичанин Дод Додлей оформил патент на производство чугуна с применением каменного угля. В патенте указывалось, что «Додлей открыл… секрет, способ и средства выплавки железной руды и производства из нее чугунного литья или брусков путем применения каменного угля в печах с раздувательными мехами, причем результаты получились такого же хорошего качества, как и те, что до сих пор производились при помощи древесного угля…»
   В ходе дальнейшей ожесточенной борьбы с предпринимателями, производившими чугун на древесном угле, Додлей разорился и был вынужден прекратить работу по усовершенствованию выплавки чугуна.
   К использованию в доменном производстве каменного угля вернулись лишь в XVIII в. Эту проблему решали металлурги, владельцы железоделательного завода – отец и сын Дерби. Первые попытки непосредственно использовать каменный уголь в домне не дали результатов, так как уголь содержал большое количество золы и других примесей, особенно серы. Поэтому для выплавки чугуна Абрахам Дерби-младший стал использовать кокс – твердое топливо повышенной прочности. Кокс получали путем нагрева каменного угля до температуры 950–1050 °C без доступа воздуха. Несколько месяцев Дерби-младший добивался нужного сочетания всех условий, необходимых для выплавки чугуна на минеральном топливе. Он испытывал разные марки углей, менял температурные режимы коксования, подбирал флюсы для отшлаковывания примесей.
   Наконец в 1735 г. была произведена первая удачная доменная плавка на коксе. Сначала кокс выжигался в кучах, как и древесный уголь. В конце XVIII в. было освоено коксование в полузакрытых камерах, а в 1830 г. – в закрытых.
   Использование кокса требовало увеличения количества воздуха, подаваемого в доменную печь. Дерби произвел на своем заводе полное переустройство воздуходувных устройств, применив для привода воздуходувок паровую машину Ньюкомена. Она приводила в действие насосы, которые дважды подавали отработанную воду на водяные колеса, являющиеся двигателем воздуходувных мехов. Это позволило увеличить объем воздуха, подаваемый в домну.
   В дальнейшем техника подачи воздуха в домну продолжала совершенствоваться. Росла мощность двигателей, приводивших в движение воздуходувные устройства. Вместо клинчатых мехов стали применяться цилиндрические. Первым их внедрил И. И. Ползунов. Он же впервые использовал в качестве двигателя для воздуходувной машины пароатмосферную машину.
   В Англии воздуходувные машины были применены в доменном производстве в 1782 г. С тех пор шло непрерывное совершенствование воздуходувных устройств. В середине XIX в. начали внедряться центробежные воздуходувки, обеспечившие доменное производство необходимым количеством воздуха.
   Эффективность новых способов подачи воздуха во многом зависела от применения в качестве двигателя для воздуходувок паровых машин. В 1775 г. впервые успешно внедрил паровую машину в доменное производство английский инженер Вилькинсон. Для этого он купил одну из первых машин Уатта.
   Применение новых систем подачи воздуха позволило значительно увеличить размеры доменных печей и ускорить процесс плавки в доменных печах, это привело к резкому повышению выплавки чугуна.
   В дальнейшем производительность доменных печей росла за счет подогрева воздуха, подаваемого в домну. Доменный воздухонагреватель впервые применил Дж. Нильсон на заводе Клайд (Шотландия). При первых же опытах нагрев воздуха до 150–300 °C позволил снизить примерно на 40 % расход топлива и резко повысить производительность домен. В 1857 г. англичанин Э. Каупер предложил воздухонагревательное устройство, работавшее на основе использования тепла отходящих газов доменной печи.
   Современная домна – это огромное сооружение высотой с 30-этажный дом. Она оборудована сложнейшими машинами и приборами. В ней плавят, как правило, не железную руду, а окатыши или агломерат. Они загружаются в печь слоями, перемежаясь коксом. Так же послойно в домну загружают флюсы – известь и другие вещества. Они заставляют пустую породу и другие ненужные вещества, образующие шлак, всплывать на поверхность жидкого металла, откуда шлак сливают в специальный ковш. Кокс, агломерат (или окатыши) и флюс называются одним словом – шихта.
   Домна по форме похожа на большую башню, круглую в плане. Она состоит из 3-х частей: верхняя – колошник, средняя – шахта и нижняя – горн. Внешняя оболочка домны – это прочный стальной кожух, выложенный изнутри огнеупорным кирпичом. Кожух непрерывно охлаждается водой.
   Шихта загружается в домну через колошник порциями по несколько тонн. Она поступает туда из бункера – склада, куда доставляются агломерат или окатыши, кокс и флюсы. В бункере при помощи автоматизированных вагонов-весов смешивается шихта. Шихта из бункера в колошник подается либо транспортерами, либо (в старых домнах) вагонами-скипами.
   Под действием собственного веса шихта опускается и проходит через всю домну. В шахте она омывается газами, образующимися при сгорании кокса. Нагревая шихту, газы вытекают из домны через колошник.
   Основная часть доменного процесса происходит в горне. В кожухе домны имеются отверстия, в которые вставлены фурмы – специальные приборы, назначение которых – подавать в печь сжатый горячий воздух. В фурмах имеются специальные окошки, через которые доменщики могут следить за процессом плавки. Внутри фурм сделаны специальные каналы, по которым течет вода для охлаждения. Горячий воздух дополнительно нагревает шихту. Это позволяет снизить расход кокса и повысить производительность домны. Кроме кокса в качестве источника тепла применяют мазут или природный газ. Воздух перед подачей в фурмы нагревается в воздухонагревателях – кауперах.
   В горне температура достигает 2000 °C. При такой температуре руда полностью расплавляется. При горении кокса образуется углекислый газ, при высокой температуре превращающийся в оксид углерода СО. СО, отнимая у железной руды кислород, восстанавливает железо из оксида. Помимо железа в домне происходит восстановление кремния и марганца. Сера, попадающая в доменную печь в основном вместе с коксом, частично соединяется с кислородом и водородом и переходит в газ. Но большая часть серы остается в шихте в виде FeS и CaS. При этом FeS растворяется в чугуне. Для его удаления из чугуна добавляют шлаки, содержащие повышенное количество СаО.
   Стекая вниз через слой раскаленного кокса, железо насыщается углеродом и превращается в чугун. Жидкий чугун скапливается на дне горна, а более легкий шлак собирается на поверхности.
   После того как в горне скопится достаточное количество чугуна, его выпускают через летки – специальные отверстия в нижней части горна. В первую очередь через верхнюю летку выпускают шлак, затем через нижнюю – чугун. Из леток чугун сливают в канавы, откуда его потом сливают в установленные на железнодорожных платформах чугуновозные ковши.
   Чугун, предназначенный для производства отливок (литейный чугун), направляется в разливочную машину. Там он застывает в виде брусков – чушек. Чугун, который впоследствии будет переработан в сталь (передельный чугун), перевозится в сталеплавильный цех, где переплавляется в сталь.
   Когда-то считавшийся вредным продуктом при выплавке железа чугун стал одним из основных конструкционных материалов современности. Он широко применяется как литейный сплав, заменяя иногда более дорогостоящие сплавы из цветных металлов. По прочности некоторые чугуны не уступают углеродистой стали. Во второй половине XX в. стал изготавливаться легированный чугун с добавками других металлов: алюминия, никеля, вольфрама, хрома и др. Добавки придают чугуну особые свойства: износостойкость, жаропрочность, коррозиостойкость.
   Основные виды чугуна различаются по форме включений графита.
   Наиболее применяемой разновидностью чугуна является серый чугун. В нем есть включения графита пластинчатой формы. Серый чугун применяется для деталей, испытывающих высокие нагрузки.
   В белом чугуне избыточный углерод, не находящийся в твердом растворе железа, присутствует в виде карбида железа – FeC. Он применяется для деталей простой формы, работающих на износ. Для повышения износостойкости белый чугун легируют хромом, вольфрамом и молибденом.
   В половинчатом чугуне часть углерода содержится в виде графита, часть – в виде карбидов. Он применяется для деталей, работающих в условиях сильного трения (например тормозные колодки), или для деталей, требующих повышенной износостойкости.
   Ковкий чугун изготавливают из белого чугуна, подвергая его отжигу, в результате чего цементит распадается, а образующийся графит приобретает форму хлопьев. Его используют в основном, в автомобиле– и тракторостроении.
   Высокопрочный чугун обладает хорошими литейными свойствами, применяется для замены стальных деталей (коленчатые валы двигателей). В высокопрочном чугуне графит имеет шаровидную или вермикулярную форму. Высокопрочный чугун с вермикулярным графитом применяется в дизелестроении.

Железо

   Первое железо, которое стал использовать человек, было в самородном состоянии. Но в отличие от меди, золота или серебра, которые встречаются на Земле довольно часто в виде слитков, железо быстро окисляется кислородом, и в чистом виде встречается очень редко. А самородное железо буквально падало на головы наших предков с неба. Ежегодно на поверхность Земли выпадают тысячи тонн метеоритного вещества, содержащего до 90 % железа. Как правило, такие метеориты весят несколько килограммов. Самый крупный железный метеорит, найденный на Земле, весил около 60 тонн. Не случайно египтяне называли железо «бенипет» – «небесный металл», а греки – «сидерос», то есть «звездный». Да вот беда – метеориты трудно обнаружить.
   Одно из самых древних изделий из железа найдено в Египте: это ожерелье из прокованных полосок метеоритного железа. Оно датировано IV тысячелетием до н. э. Примерно к тому же периоду относится и кинжал из метеоритного железа, найденный на юге Месопотамии (современный Ирак).
   Но метеоритное железо встречается довольно редко, поэтому перед людьми встала задача научиться получать его из руд. Для восстановления железа из его окислов окисью углерода требуется температура около 700 °C. Однако железо, получаемое таким путем, представляет собой запеченную массу из металла, его карбидов, окислов и силикатов. При ковке она рассыпается.
   Первые опыты с окислами железа скорее всего проводили древние гончары, стремившиеся использовать их как красящее вещество. Они применяли флюс вместе с костной смесью (СаО, Р2O5). При этом также получались железные крицы, удобные для ковки. При температурах 1075 °C и выше для получения крицы флюсы не требовались. Таких температур достигали, складывая руду и древесный уголь слоями в яму или каменный горн. Уголь поджигали и через эти слои продували «сырой» (неподогретый воздух). Вначале мастера осуществляли продувку при помощи своих легких, вдувая воздух через отверстия внизу горна. Позже стали применять мехи, сшитые из шкур животных.
   Сгорая в потоке воздуха, уголь нагревал руду и частично восстанавливал ее до состояния железа. Оставшаяся часть окислов железа вместе с окислами других примесей плавилась и образовывала жидкий шлак. На дне горна получали крицу – комок пористого, тестообразного, пропитанного жидким шлаком металла. Многократной проковкой крицы в горячем состоянии шлак «выжимали» и получали железную поковку, представлявшую собой сварочное ковкое железо, или мягкую сталь. Содержание углерода в такой стали – 0,12–0,26 %; серы, фосфора и других примесей очень мало.
   Следует отметить, что железо всегда содержит примеси. Фосфор и сера относятся к вредным примесям, так как повышают хрупкость металла. Техническим железом называют сплав железа и углерода, содержащий 99,8–99,9 % железа, 0,1–0,2 % примесей и 0,02 % углерода. Но такой материал мягкий, поэтому практически не находит применения. Уникальность железа заключается в том, что в соединении с углеродом резко повышается его прочность и твердость. Таким образом, процесс получения железа из руды одновременно повышает механические свойства железа. Все соединения железа с углеродом можно разделить на две группы: стали и чугуны. Стали содержат до 2 % углерода, чугуны – свыше 2 %. Вначале люди использовали только сталь. Чугун, который образовывался при сильном науглероживании железа, не применялся, поскольку был хрупким и не поддавался ковке.
   Долгое время для производства стали использовался сыродувный процесс. Но еще в древности металлурги применяли тигльный способ выплавки железа, меди, бронзы. Добытый металл переплавлялся в небольших огнеупорных сосудах – тиглях. Таким образом металл очищался от нежелательных примесей, его структура улучшалась. Тигльная сталь применялась для изготовления холодного оружия – мечей, сабель, кинжалов, отличавшихся необычайной остротой и упругостью. Именно из тигльной стали делали знаменитые дамасские клинки.
   На процесс изготовления железа влияет режим термообработки. Уже первые кузнецы заметили, что если нагретый докрасна слиток металла опустить в холодную воду или иную охлажденную жидкость, его твердость резко возрастет. Этот процесс назвали закалкой. В некоторых старых металлургических трудах упоминается «закалка скотинным рогом с солью». По сути, это азотирование – насыщение поверхностного слоя азотом.
   Потребность в стали постоянно росла. Увеличивались размеры горнов, совершенствовалась их форма, повышалась мощность дутья. Высота печей достигала нескольких метров, воздуходувные трубы приводились в движение специальными водяными трубами и огромными водяными колесами. Температура в печах повысилась до 1250–1350 °C, что привело к увеличению количества чугуна, получаемого при плавке. В то время свойства чугуна не позволяли применять его для промышленных нужд. Но в XIII–XIV веках был открыт «кричный передел». Его суть заключалась в том, что чугун загружали в печь вместе с рудой. В результате происходило окисление примесей, в первую очередь углерода. Переплав чугуна позволял получать сталь хорошего качества и в больших количествах. Двухстадийный способ получения стали из руды сохранился и по сей день, являясь основой современных схем производства стали (за исключением бездоменной металлургии).
   Технический переворот в металлургии произошел в конце XVIII – начале XIX века с изобретением паровой машины. И как следствие – рост промышленного производства и увеличение числа машин. Это вызвало повышенную потребность в металле и послужило толчком к развитию металлургии. Развитию же препятствовало отсутствие заменителя древесного угля. Он был дорог, запасы древесины для его производства – ограничены. Еще в 1558 г. английская королева Елизавета запретила производить уголь из древесины. Поэтому в качестве топлива стали использовать каменный уголь. Первые попытки использования угля были неудачными: проблемой стала высокая температура его воспламенения. Кроме того, чугун, выплавленный на каменном угле, содержал много серы и фосфора, поэтому для передела в сталь не годился. В 1619 г. англичанин Додлей получил патент на производство чугунного литья или брусков путем применения каменного угля в печах с раздувательными мехами. Но внедрить в практику это изобретение ему не удалось, и свой секрет он унес в могилу.
   В 1713 г. Абрахам Дерби-старший нашел способ очистки каменного угля от примесей путем его обжига. Такой способ назвали коксованием. Но Дерби-старший применял кокс в доменной плавке лишь частично (из-за отсутствия техники для мощного воздушного дутья). В 1735 г. его сын Абрахам использовал для доменного дутья паровую машину. Качество выплавленного чугуна было высоким, а производительность из-за значительного увеличения температуры резко возросла. Дерби-сын заменил деревянные рельсы, по которым подавали вагонетки с рудой, на чугунные. Так появилась первая железная дорога. В 1779 г. Абрахам Дерби-внук построил первый в мире мост из литых чугунных деталей.
   Применение каменного угля сдерживалось высоким содержанием серы в нем. Это придавало чугуну повышенную хрупкость. Проблему помогли решить пудлинговые печи. В них металл не соприкасался с коксом, а нагревался теплом, отраженным от свода. Для более равномерного выгорания углерода металл постоянно перемешивали, что и дало название процессу («puddle» по-английски – перемешивать).
   Следующим шагом в развитии доменного процесса стал нагрев воздуха, подаваемого в печь. Эта идея, предложенная шотландцем Нильсоном, первоначально была встречена в штыки. Тогда полагали, что чем холоднее воздух, тем лучше идет плавка. Внедрение этого изобретения позволило сократить расход кокса на треть, а выплавку чугуна увеличить в полтора раза. Идею Нильсона развил английский инженер Каупер. В 1857 г. он предложил оригинальную конструкцию доменного воздухонагревателя (каупера), позволявшего нагревать воздух до 600–700 °C. Современные кауперы позволяют нагреть воздух перед подачей в печь до 1200 °C.
   К середине XIX века существовавшие тогда пудлинговый процесс и кричный передел не удовлетворяли требования металлургов из-за продолжительности, трудоемкости и низкого качества металла, а тигльный способ, позволявший получать хорошую сталь, был дорогим и применялся мало.
   В то время даже лучшие мастера руководствовались в своей работе исключительно опытом предшественников и своим собственным. О процессах, происходящих в металле при плавке и обработке, они практически ничего не знали, поэтому сознательно управлять ими не могли. Это не позволяло совершенствовать железоделательное производство.
   Великий русский ученый-металлург Павел Петрович Аносов задался целью превратить металлургию железа из ремесла в науку. После окончания в 1817 г. Горного корпуса в Петербурге он получил назначение на заводы Златоустовского горного округа на Урале. Экспериментируя с различными процессами получения стали, Аносов сумел получить сталь высокого качества, сократив продолжительность выплавки в несколько раз. Ему удалось получать сталь непосредственно из чугуна. Заветной мечтой русского металлурга была разгадка тайны булата. На пути к ее раскрытию Павел Петрович провел тысячи опытов с различными добавками: кремнием, марганцем, алюминием, титаном, даже с золотом и платиной. В конце концов молодой инженер пришел к выводу, что булат – это только железо и углерод. А опыты с добавками других металлов в железо положили начало металлургии легированных сталей.
   Для исследования структуры металла Аносов впервые в мировой практике применил микроскоп, заложив основы металлографического анализа. В 1833 г. был выкован первый булатный клинок, перерубавший и гвозди, и тончайший газовый платок. Итог своим многолетним трудам Аносов подвел в своей монографии «О булатах».
   Переворот в производстве литой стали призошел во второй половине XIX века. В 1856 г. Генри Бессемер взял патент на изобретение – конвертер, в котором осуществлялась продувка воздухом расплавленного чугуна, что позволяло превращать чугун в сталь без дополнительного нагрева.
   В 1864 г. француз Пьер Мартен разработал новый способ выплавки стали, названный затем в его честь. Несмотря на то, что мартеновский процесс был более продолжительным, чем бессемеровский, он обеспечивал более высокое качество стали. Причем сырьем для него могли служить металлолом и отходы конвертерного производства. Плавка в мартене легко контролировалась, и ею можно было управлять. К началу XX в. мартеновский способ по объемам производства превзошел бессемеровский.
   Большой вклад в исследование процессов, происходящих в стали, внес русский ученый Д. К. Чернов. Он исследовал нагрев и охлаждение стали, пытаясь найти оптимальный режим термообработки для различных ее сортов. Опыты Чернова помогли разработать способ получения требуемой структуры стали и положили начало новой науке – металловедению.
   В начале XIX в. русский ученый Петров выдвинул идею выплавки железа в электропечи. В 1853 г. во Франции был получен первый патент на электропечь. В 1879 г. Вильгельм Сименс построил первую электропечь. Но получаемый в ней металл содержал большое количество примесей. В 1891 г. Н. Г. Славянов осуществил первую плавку стали в тигльной печи, снабженной электродами. В 1892 г. Анри Муассан создал лабораторную электропечь, температура в которой достигала 4000 °C. Благодаря производству дешевой электроэнергии на гидроэлектростанциях были построены электропечи в Швейцарии, Швеции, Германии, США. Высокая температура (до 5000 °C), а также восстановительная атмосфера позволяли получить полностью очищенную от примесей сталь. Именно появление электропечей дало возможность производить сталь с добавками других элементов – хрома, ванадия, вольфрама, титана и др. – легированную сталь.
   В XX веке идет работа над заменой доменного процесса. Это связано с удорожанием производства кокса и повышением требований к охране окружающей среды. Еще Д. К. Чернов предложил конструкцию печи, выплавлявшей не чугун, а железо и сталь. В 60-е годы XX века появились комбинаты, сырьем для которых служат окатыши – небольшие «орешки» из железорудного концентрата. В установках прямого восстановления, работающих на природном газе, из окатышей извлекают кислород. На второй стадии в мощных дуговых печах выплавляется высококачественная электросталь, очищенная от примесей. Эта технология позволяет обходиться без кокса, не загрязнять окружающую среду отходами производства.
   Передовой технологией является и непрерывная разливка стали. На смену сложной многоступенчатой схеме получения стальных слитков и превращения их в прокатную заготовку пришла единственная операция. Она позволяет превратить расплавленный металл в полуфабрикат для проката. Непрерывная разливка стали намного упростила технологию, что позволило снизить производственные затраты. При этом сократились потери металла, повысилось качество стали. Кроме того, улучшились условия труда и повысилась возможность автоматизации процесса разливки.
   В киевском Институте электросварки им. Патона в 1952 г. был разработан способ электрошлакового переплава металлов. Он позволяет получить слитки больших размеров и сложной конфигурации.
   Еще одним эффективным методом получения металлических изделий является порошковая металлургия. Она позволяет получать изделия путем прессования и спекания металлических порошков.
   Постоянное развитие технологий производства сплавов на основе железа позволяет получать материалы, соответствующие современным требованиям промышленности. Поэтому можно с уверенностью сказать, что железный век человечества продолжается.

Интегральная микросхема

   Около полувека в радиотехнике царили электронные лампы. Они были хрупкими, большими, ненадежными, потребляли много энергии и выделяли массу тепла. Появившиеся в 1948 г. транзисторы были надежнее, долговечнее, потребляли меньше энергии, выделяли меньше тепла. Они дали возможность разрабатывать и создавать сложные электронные схемы из тысяч составляющих: транзисторов, диодов, конденсаторов, резисторов. Но это усложнение породило проблему, заключавшуюся в дороговизне ручной пайки многочисленных соединений. Это занимало много времени и снижало общую надежность устройств. Требовался более надежный и рентабельный способ соединения электронных компонентов схем.
   Кроме того, работу большинства полупроводниковых приборов обеспечивает тонкий поверхностный слой толщиной в несколько микрометров. Остальная часть кристалла играет роль основания (подложки), необходимого для прочности транзистора или диода.
   При изготовлении транзисторов в них размещали три тонких слоя с р– и n-проводимостью, создав в нужных местах пленочные металлизированные контакты для соединения с внешними элементами схемы и диэлектрические пленки, изолирующие каждый контакт. Технология нанесения полупроводниковых металлизированных и диэлектрических пленок послужила основой создания пленочных интегральных микросхем.
   Одним из решений проблемы уменьшения количества соединений в электронных схемах стало создание микромодульной технологии. Она поддерживалась Министерством обороны США. Идея состояла в том, что все компоненты должны иметь одинаковые размеры и форму и содержать выводные контакты для межэлементных соединений. При создании схем модули объединялись в сложные объемные структуры с меньшим количеством проводных соединений.
   Среди компаний, занимавшихся созданием микромодульных схем, была «Texas Instruments». Один из ее сотрудников, Дж. Килби, считал, что микромодуль не сможет решить проблему уменьшения числа соединений в сложных схемах. Он начал искать другое решение и пришел к выводу, что основу схемы должен составлять полупроводниковый материал. Пассивные элементы схемы (резисторы и конденсаторы) могли быть сделаны из того же материала, что и активные (транзисторы). Если все компоненты сделаны из одного материала, их можно соединить между собой, формируя законченную схему.
   В июле 1958 г. Килби начал работать над созданием микросхемы, а 12 сентября того же года он продемонстрировал руководству компании рабочую интегральную схему, сформированную в кусочке германия, наклеенного на стеклянную пластинку.
   Промышленники скептически восприняли появление микросхемы. Только военное ведомство США, и в частности воздушные силы, проявили определенный интерес к новому изобретению.
   В феврале 1960 г. фирма «Fairchild» выпустила семейство монолитных транзисторных логических элементов с несколькими биполярными транзисторами на одном кристалле кремния. Оно получило название «микрологика». Фундамент развития интегральных микросхем был заложен планарной технологией Хорни и монолитной технологией Нойса в 1960 году. Сначала микросхемы основывались на биполярных транзисторах, а затем на полевых транзисторах и комбинациях обоих видов.
   Интегральная схема сначала отвоевала место на рынке военных изделий, благодаря программе создания первого компьютера на полупроводниковых кристаллах для Министерства Воздушных сил в 1961 году и производству ракет «Минитмен» в 1962-м.
   Интегральные схемы, содержавшие до 100 элементов, называются микросхемами с малой степенью интеграции, до 1000 – микросхемами со средней степенью интеграции, до 10 000 – большими интегральными схемами.
   В 1967 г. был выпущен первый электронный карманный калькулятор. Его размеры были следующими: 108×156×27 мм. Он был создан на основе большой интегральной микросхемы БИС, выполнявшей основные математические действия (сложение, вычитание, умножение и деление). Ее создателями были Дж. Килби, Дж. Мерриман и Джеймс Ван Тассел.
   Рассмотрим процесс изготовления интегральной микросхемы, основой которой служит пластина чистого кремния, обладающая р-проводимостью. Ее тщательно обрабатывают: шлифуют, полируют. После этого проводится окисление пластины в атмосфере сухого кислорода. В результате на ее поверхности возникает слой двуокиси кремния SiO2. Он обладает большой прочностью и высокой химической стойкостью.
   Затем проводится фотолитография: на пластину наносится светочувствительный слой (фоторезист). На следующем этапе на фоторезист накладывается фотошаблон. На нем фотографическим способом изготовлен рисунок всех элементов, которые необходимо закрепить на подложке. Фоторезист облучается ультрафиолетовым светом, проявляется, полимеризуется и сохраняется в тех местах, где фотошаблон имеет прозрачные окна. Там, где ультрафиолетовый свет не проник через шаблон, фоторезист удаляется химической обработкой. Оставшийся фоторезист служит контактной маской, защищающей те области пленки металла, которые должны быть сохранены от химического воздействия.
   Поверхность схемы подвергается химическому травлению, удаляющему пленку металла с поверхности, кроме мест, защищенных фоторезистом.
   Применяемый в описанной схеме фоторезист называется негативным. Применяется также позитивный фоторезист, который не закрепляется, а разрушается ультрафиолетовым светом. При его использовании окна на фотошаблоне соответствуют пустым промежуткам на будущей микросхеме.
   На участки поверхности подложки, свободные от фоторезиста, вносятся примеси путем легирования – диффузии необходимых примесей внутрь подложки. Такими примесями могут быть сурьма или мышьяк, которые обладают n-проводимостью. Другим способом получения участков с n-проводимостью является планарная технология. Она заключается в том, что перед легированием проводится эпитаксия – постепенное наращивание слоя, по структуре повторяющего кристаллическую структуру подложки, но имеющего отличные от нее физические свойства. Так, методом эпитаксии на подложку с p-проводимостью наносится слой с n-проводимостью. Используя соответствующие маски, в нужные области эпитаксиального слоя вводятся примеси, обеспечивающие p-проводимость.
   Все зоны и их контакты создаются в одной плоскости, отсюда и термин «планарная технология».
   Для нанесения пленок, легирования подложек применяются вакуумные камеры, в которых могут располагаться электронные пушки, магнетроны, источники рентгеновских или ионных лучей.
   После эпитаксии или легирования поверхность вновь покрывают слоем оксида, проводят фотолитографию, травление, открытие новых «окон» кремния, после чего проходит легирование бором, обладающим p-проводимостью. Так создаются базовые области транзисторов, p-n переходы и области резисторов.
   При следующей диффузии – диффузии фосфора – формируются эмиттерные области транзисторов. Затем вскрываются «окна» под контакты с областями коллектора, эмиттера и базы транзисторов, p– и n-областями диодов и с резисторами.
   Затем создаются внутрисхемные соединения путем напыления пленки алюминия, которая после этого селективно травится путем фотолитографии. Сохраненные участки алюминия образуют электроды элементов, соединительные дорожки и контактные площадки для подсоединения структуры интегральной схемы к выводам корпуса.
   Всю поверхность полупроводникового кристалла покрывают защитным слоем, который после этого удаляют с контактных площадок.
   Готовые микросхемы подвергают тщательному контролю для выявления дефектных изделий.
   Применение микросхем позволило значительно уменьшить размеры радиотехнических приборов, электронно-вычислительных машин, увеличить их быстродействие.

Интернет

   Запуск Советским Союзом в 1957 г. искусственного спутника Земли, полет Юрия Гагарина в 1961 г. побудил американцев начать широкомасштабные исследования в области передовых технологий.
   В 1968 году Министерство обороны США встало перед необходимостью решения задачи: как связать между собой несколько компьютеров. Тому было две причины:
   – проведение научных исследований в военно-промышленной сфере;
   – создание сети, устойчивой, в отличие от телефонной, к массовым повреждениям в результате ядерного удара или бомбардировки.
   Эта работа была возложена на Advanced Research Projects Agency (ARPA) – Управление передовых исследований Министерства обороны США. Через пять лет появилась ARPA-net. К этой сети предъявлялись следующие требования:
   – устойчивость – любая часть сети может быть разрушена без ущерба для функционирования сети в целом;
   – равноправность конечных систем – любой компьютер может связаться с другим компьютером как с равным.
   Передача данных основана на межсетевом протоколе – Internet Protocol (IP). Протокол IP представляет собой свод правил и описание принципов работы сети. Он включает в себя правила налаживания и поддержания связи в сети, правила общения с данными – указания о том, как и куда их передавать по сети. IP работает в паре с TCP или UDP. UDP обеспечивает транспортировку отдельных сообщений без проверки, тогда как TCP более надежен и предполагает проверку установления соединения.
   Сеть проектировалась таким образом, чтобы от пользователя не требовалось никаких знаний о ее структуре, которая может измениться в любой момент. Ею может пользоваться человек, не имеющий технического образования и очень далекий от техники. Для того чтобы послать сообщение по сети, ему достаточно поместить его в некоторый конверт (IP), указать на нем конечный адрес и передать полученные в результате этих процедур пакеты в сеть.
   В первые десять лет сети развивались незаметно – они были предназначены для специалистов в области военной техники и для сотрудников вычислительных учреждений. Через десять лет после появления ARPA-net, в конце 1970-х, стали появляться локальные вычислительные сети (ЛВС), например Ethernet. В это же время появились первые суперкомпьютеры и операционная система UNIX. Эти суперкомпьютеры обладали вычислительными мощностями, превышающими возможности больших ЭВМ. Суперкомпьютеры были очень дороги, но при совместном использовании доступными по цене. В Америке было поставлено 5 таких суперкомпьютеров: предполагалось, что на них будут производиться математические расчеты на основе данных, посылаемых по сети из различных научных центров. Затем результаты должны были высылаться обратно. Однако, когда эти компьютеры связали в сеть, оказалось, что их обслуживание слишком дорого. Но сеть для доступа к ним уже была создана.
   В то же время стали создаваться другие сети, например сеть NASA. Они использовали протоколы, напоминающие IP. Постепенно эти сети стали объединяться в сеть сетей, и пришлось создавать единое адресное пространство. Единая сеть стала называться Интернет, сеть сетей. В 1972 году было произведено первое международное подключение к Интернет – подключились Англия и Норвегия. Интернет стала сетью международной. В конце 1980-х годов к Интернет стали подключаться страны Восточной Европы.
   Одним из достоинств сети была возможность подключения к ней компьютеров различных производителей, которые могли работать совместно с любыми другими компьютерами.
   В 1982 году был создан единый протокол TCP/IP, объединяющий ранее действовавшие протоколы. ARPA начала использовать его в ARPA-net – это событие можно считать рождением Internet. В этом же году EUnet начала предоставлять услуги e-mail – электронной почты и Usenet сервис.
   В 1983 г. был разработан Name server. Теперь пользователям не надо было знать точный путь к другой системе.
   Количество серверов с 1984 по 1992 г. возросло с 1000 до 1 000 000.
   В 1990 г. прекратил свое существование прародитель Интернет – ARPA-net.
   Интернет – это не одна сеть, а тысячи взаимосвязанных отдельных сетей, каждая из которых имеет свои собственные правила. Попасть в Интернет можно через любую из них. Для подключения к Интернет необходим провайдер – поставщик сетевых услуг.
   Для соединения компьютеров используются кабели в сочетании со специальной электроникой – сетевой платой. Они обеспечивают передачу информации на сотни метров. Сетевые платы позволяют нескольким компьютерам использовать для связи один кабель.
   Для соединения компьютеров, расположенных на большом расстоянии, например в разных городах, используется телефонная связь. Но применять телефонные провода напрямую нельзя, поскольку телефонная сеть предназначена для передачи звуковой информации, компьютерные же сигналы имеют иную природу.
   Для соединения компьютеров по телефонным линиям применяется модем. Он модулирует и демодулирует сигнал, отсюда и название – модем (модулятор – демодулятор). Модем переводит информацию в особые импульсы, которые затем расшифровывает модем, находящийся на другом конце провода.
   Модемы бывают разных форм и размеров, внутренние и внешние. Они также отличаются скоростью передачи данных, полученных от компьютера, в телефонную линию.
   Модемы принимают специальные меры, позволяющие им работать при помехах на телефонной линии: если принимающий модем не уверен на 100 % в том, что он правильно понял то, что ему было передано, он переспрашивает заново. В результате вся информация будет передана без искажений, но чем больше помехи, тем меньше скорость передачи. Кроме того, помимо информации модем передает объем этой информации («контрольную цифру»), и принимающий модем сравнивает полученный им объем с «контрольной цифрой».
   В 1992 г. был разработан WWW (World Wide Web – дословно: «всемирная паутина»). Он представляет собой глобальную гипертекстовую систему отображения информации. Гипертекст – это текст со вставленными в него перекрестными ссылками.
   Для чтения гипертекстов используются специальные программы просмотра – броузеры (наиболее популярные броузеры Netscape Navigator и Internet Explorer). Текст содержит специальные ссылки на тексты, звуковые файлы, фотографии, рисунки, видео, и браузер обрабатывает их. Такой текст похож на энциклопедию со ссылками на список литературы и с приложениями в конце.
   В последнее время все чаще используется гипермедиа – синтез гипертекста и мультимедиа. Гипермедиа документ может включать в себя не только текст, но и графику, звук и видеоинформацию.
   Долгое время гипертекстовые системы использовались как удобный инструмент при работе с большими объемами научной информации. Постепенно стало ясно, что WWW – великое изобретение, способное вывести сетевые технологии на качественно новый уровень. В конце концов гипертекстовая система стала глобальной. Интернет стала похожа на книгу. Поэтому отдельные блоки информации называются Web-страницами (Web-page), а совокупности Web-страниц (например об одной организации) называется Web-сайтом (Web-site).
   Часть глобальной или локальной сети, которая дает возможность пользователям сети получать доступ к гипертекстовым документам, расположенным на данном сервере, называется Web-сервером.
   Работа с WWW происходит по следующей схеме:
   Пользователь посылает запрос на интересующую его тему на броузер, тот, в свою очередь, переадресует его в Сеть. Ответ идет в обратном порядке. В большом количестве информации трудно найти сведения на интересующую тему. Для облегчения поиска созданы специальные поисковые системы. Среди наиболее известных поисковых систем в русскоязычном Интернете – ALTAVISTA, YAHOO, GOOGLE.
   Весьма популярной услугой в Интернете является электронная почта (electronic mail, или e-mail сокращенно). Она позволяет быстро и недорого посылать сообщения в любой конец света и получать ответы. Использование электронной почты имеет свои преимущества:
   – она дешевле, чем обычная почта или телефонный звонок;
   – быстрее, чем обычная почта, – время доставки сообщения в любой конец мира обычно составляет несколько секунд или минут;
   – не надо беспокоиться, на месте ли получатель письма;
   – создав список рассылки и написав одно письмо разослать его группе людей;
   – можно использовать логические имена, не запоминая сложные адреса;
   – можно подписаться на группу новостей по интересующей тематике.
   Еще одна возможность сети Интернет – это общение on-line – в режиме реального времени. При наличии специальной программы можно заходить в каналы общения и переговариваться с другими людьми. Текст сообщения приходит к собеседнику через несколько секунд. Разговор происходит в каналах с определенными названиями, которые отражают общую направленность (тематику) разговора.
   В данный момент существует несколько типов программ, используемых для общения, различающихся оформлением, наличием различных опций и способом подключения. Некоторые программы позволяют передавать не только текст, а звук и видео. Наиболее распространенными программами являются IRC и ICQ.
   Некоторые специалисты считают появление сети Интернет новой информационной революцией, третьей по счету после появления письменности и книгопечатания. Насколько они правы, покажет время.

Искусственный спутник Земли

   Большую роль в подготовке запусков искусственных спутников Земли сыграли научные исследования, заложившие основы теории реактивных двигателей и космических полетов. Важнейшее место в этом занимают работы К. Э. Циолковского. Он обосновал возможность применения ракетных аппаратов для межпланетных сообщений. Чтобы достигнуть космических скоростей, Циолковский выдвинул идею применения многоступенчатых ракет, которые он назвал «ракетными поездами».
   Предшественницами космических ракет, выводивших на орбиту искусственные спутники Земли и космические корабли, были баллистические ракеты. В начале развития ракетной техники первенство в этой области было у Германии: в 1933 г., сразу после прихода Гитлера к власти, В. фон Браун стал вести работу над секретным проектом А-1 (Агрегат первый). А-1 представлял собой жидкостную ракету, работающую на спирте и жидком кислороде. Ее длина составляла около 1,5 м, стартовый вес – 150 кг.
   Конструкция А-1 была неудачной: центр тяжести конструкции находился слишком далеко от двигателя, что приводило к кувырканию в полете. В 1934 г. появился новый вариант – А-2. Пуск этой ракеты прошел удачно, она поднялась на высоту 220 м.
   Благодаря этому успеху, руководство вооруженных сил Германии приняло решение о создании «Армейской экспериментальной станции» в Пенемюнде на Балтийском море. На создание ракетного оружия в 1937–1940 гг. было выделено 550 млн марок.
   Испытания следующей ракеты, А-3, шли неудачно: она либо тонула в море, либо взрывалась при падении на сушу. Фон Браун и его коллега К. Ридель считали ее промежуточным этапом перед своим главным детищем – ракетой-снарядом А-4.
   А-4 по своим параметрам превосходила все ранее созданное в ракетной технике. Ее длина составляла 14 м, наибольший диаметр – 1,65 м. В головной части ракеты имелось боевое отделение, где содержался боевой заряд –1 т взрывчатого вещества. В снаряде было два бака: один с горючим – спиртом и второй с окислителем – жидким кислородом. Горючего в ракете было 3 т, а окислителя – 5,5 т.
   А-4 имел специальный насос для подачи окислителя и горючего, камеру сгорания, а также отделение с приборами управления. Направляющие плоскости стабилизатора и газовые и воздушные рули были нужны для управления ракетой и ее устойчивости. Мощность жидкостно-реактивного двигателя превышала 500 000 л. с, а двигатель развивал тягу в 25,4 т, значительно превышающую стартовый вес ракеты. Предельная, максимальная скорость ракеты составляла 5500–5700 км/ч, а дальность полета – 300–400 км.
   В мае 1943 г. в Пенемюнде состоялись запуски крылатой ракеты, также разрабатывавшейся на этом полигоне, и А-4. Крылатые ракеты взорвались сразу после старта, а запуски обоих А-4 прошли успешно. Кроме того, крылатая ракета требовала для запуска громоздкую эстакаду, а А-4 взлетала с небольшой бетонированной площадки. Поэтому, несмотря на то что крылатая ракета стоила 50 000 марок, а А-4 – 300 000 и они несли одинаковое количество динамита, было решено продолжать работу в обоих направлениях.
   После показа Гитлеру документального фильма о стартах ракет, А-4 получила название Фау-2 (от первой буквы немецкого слова «Vergeltungswaffe» – «Оружие возмездия»).
   Фон Брауну удалось соединить в Фау-2 мировые достижения в конструировании жидкостных ракет. Так, использовались компоненты топлива, найденные Г. Обертом для ракеты еще в 1917 г., учитывались идеи Циолковского о применении жидких компонентов для охлаждения двигателя и создании специальных насосов для их подачи в камеру сгорания. Схему расположения баков и конструкцию турбонасосов, аналогичную брауновской, создал американец Р. Годдард.
   18 сентября 1944 г. на Лондон была выпущена первая Фау-2. Затем в течение семи месяцев немцы вели систематический обстрел Англии ракетными снарядами. Таким образом немцы могли перебросить тонну взрывчатого вещества на расстояние 300–350 км и бомбардировать Лондон из Гааги. Но точность попадания снарядов была очень мала, они несли сравнительно немного взрывчатого вещества и в целом не были эффективны как военное оружие, хотя, конечно, причиняли большие разрушения.
   Менее чем через минуту после взлета ракета достигала высоты 30 км, а вскоре развивала огромную скорость – более 5500 км/ч. Специальные установки управления автоматически поворачивали ракету, которая, достигнув высоты 90 км, продолжала полет, спускаясь к цели по параболической траектории.
   Ракета падала на цель со скоростью, превышающей скорость звука более чем в два раза. При быстром движении ракеты ее обшивка накалялась, и, по рассказам очевидцев, ракеты «А-4», падавшие на Лондон, светились слабым красным светом.
   После разгрома нацистской Германии дальнейшие работы по совершенствованию А-4 проводились в Америке. В 1945 г. в США оказались немецкие специалисты, в том числе В. фон Браун, один из создателей «А-3» и «А-4». Он возглавлял все космические разработки в США в 1952–1956 годах.
   В течение 1946–1952 гг. на испытательном полигоне Уайт-Сэндс (штат Нью-Мексико) американцы производили запуск нескольких десятков ракет типа А-4.
   Отдельные ракеты достигли высоты 160 км, а одноступенчатая ракета «Викинг», созданная в США (имевшая большую длину и меньший диаметр, чем А-4), в 1951 г. поднялась на высоту более 210 км. Она развивала силу тяги более 8000 кг и имела скорость до 6400 км/ч. Одноступенчатая ракета «Викинг», запущенная в мае 1954 г., достигла высоты 253 км. Стартовый вес ее был равен 7,5 т, а максимальная скорость превышала 6880 км/ч. При запуске двухступенчатой ракеты «Бампер» была достигнута скорость 8 тыс. км/ч и высота 400 км.
   Разработка ракет велась и в СССР. 18 октября 1947 г. в Советском Союзе был проведен запуск первой советской баллистической ракеты Р-1, созданной под руководством С. П. Королева.
   В мае 1949 г. в СССР был произведен вертикальный запуск одноступенчатой ракеты В-1А, созданной на базе Р-1 на высоту в 110 км. Вес научной аппаратуры, который она подняла, достигал 130 кг.
   Такая ракета включала головную часть с полезным грузом исследовательской аппаратуры, среднюю часть с топливными баками и хвостовую с двигателями и наружными стабилизаторами. Корпус ракеты, созданный из алюминиевых сплавов, имел цилиндрическую, с заостренной головной частью форму. Для запуска ракеты применялись специальные стартовые площадки и устройства. Приборы и оборудование ракет включали радиотехнические устройства, позволявшие вести наблюдения за верхними слоями атмосферы и передавать показания приборов по радио на землю. Применялся также особый механизм для сброса аппаратуры при вхождении ракеты в плотные слои атмосферы при спуске.
   Расчеты, проведенные сотрудниками КБ Королева, показали, что для запуска спутника Земли необходима многоступенчатая ракета, способная взлетать на большую высоту, чем одноступенчатая. До этого были известны две схемы размещения ступеней – последовательно одна за одной, вдоль по оси ракеты или параллельно – боком друг к другу. Различные схемы обсчитывались группой математиков под руководством Д. Е. Охоцимского.
   В окончательном варианте были соединены оба известных до того типа расположения ступеней. На одноступенчатую ракету сбоку навешивались еще 4 блока. На старте включались двигатели основного, центрального блока и боковых. После выработки топлива боковые блоки отстреливались, а центральный блок продолжал подъем. Таким образом, боковые блоки были первой ступенью, а центральный одновременно первой и второй.
   В начале 1956 г. советское правительство поддержало инициативу С. П. Королева и Академии наук СССР и приняло решение о создании в 1957–1958 гг. искусственного спутника Земли. Была создана специальная комиссия по ИСЗ, которую возглавил советский ученый в области математики и механики М. В. Келдыш. В нее вошли С. П. Королев и крупный специалист в области ракетостроения М. К. Тихонравов. 23 сентября Королев сделал доклад о разработке эскизного проекта спутника.
   Сначала предполагалось создать орбитальную научную лабораторию. Но работа над ней продвигалась медленнее, чем создание ракеты, поэтому было принято решение запустить аппарат упрощенной конструкции, чтобы проверить возможность его выведения на орбиту, контроля за ходом полета, надежности систем энергоснабжения, связи, терморегулирования.
   21 августа 1957 г. был проведен первый удачный пуск баллистической ракеты, ставшей прообразом космической ракеты «Восток». Для того чтобы вывести спутник на орбиту, была необходима первая космическая скорость в 8 км/с.
   4 октября 1957 г. в 22 ч 58 мин по московскому времени состоялся отрыв ракеты-носителя первого искусственного спутника Земли от стартового комплекса.
   Первый спутник представлял собой сферический аппарат диаметром 58 см с 4 антеннами длиной 2,4 и 2,9 м. Внутри заполненного жидким азотом корпуса из алюминиевого сплава находились три аккумуляторные серебряно-цинковые батареи для питания радиопередатчиков, работавших на волнах длиной 15 и 7,5 м и вентилятор. Масса спутника достигала 83,6 кг. Он назывался ПС – простейший спутник.
   Эллиптическая орбита первого спутника имела наибольшее удаление от Земли, апогей, 947 км, наименьшее, перигей, 228 км, время обращения вокруг Земли – 96 минут.
   Первый искусственный спутник Земли просуществовал как космическое тело 92 суток, за это время он совершил 1400 оборотов вокруг Земли и прошел около 60 млн км. И вот 4 января 1958 г. он вошел в плотные слои атмосферы и прекратил свое существование.
   3 ноября 1957 г. на орбиту был выведен второй ИСЗ. Он представлял собой последнюю ступень ракеты-носителя, в которой была размещена вся научная аппаратура. В передней части последней ступени ракеты были установлены приборы для исследования излучения Солнца и космических лучей, сферический контейнер с радиопередатчиками и другой аппаратурой, а также герметическая кабина с подопытным животным, собакой Лайкой. Системы регенерации и терморегулирования поддерживали в кабине условия, необходимые для существования собаки. Общий вес аппаратуры, животного и источников питания составлял 508,3 кг.
   Приборы и контейнер ракеты были защищены во время полета в плотных слоях атмосферы от аэродинамических и тепловых воздействий специальным защитным кожухом. После выведения последней ступени ракеты на орбиту защитный кожух был сброшен.
   Во время полета спутника автоматически велась передача разнообразных наблюдений. Эти передачи обеспечивались при помощи специальной радиоаппаратуры. Мощность установленных радиопередатчиков позволила принимать сигналы спутника любительскими приемниками на расстояние нескольких тысяч километров. Сигналы, излучаемые передатчиками, имели вид телеграфных посылок. Эти сигналы использовались для наблюдения за орбитой спутника, а также для передачи изменений параметров на спутнике. Это достигалось путем установления на спутнике чувствительных элементов, которые в зависимости от изменения тех или иных параметров автоматически меняли длительность посылок и пауз. Радиотелепередающая аппаратура, установленная в корпусе последней ступени ракеты, где находилась герметическая кабина с подопытным животным, значительно расширила имеющиеся сведения о состоянии подопытного животного.
   Второй искусственный спутник весил 508,3 кг. Высота перигея была 225 км, апогея – 1671 км. Второй ИСЗ находился на орбите до 14 апреля 1958 г. Проведенные на нем исследования дали первые научные сведения о состоянии живого организма в условиях космического полета.
   31 января 1958 г. с помощью ракеты «Юпитер-С» был запущен первый американский спутник «Эксплорер-1» массой 14 кг.
   15 мая 1958 г. состоялся запуск третьего советского искусственного спутника Земли. Его вес достигал 1327 кг, длина – 3,57 м, наибольший диаметр 1,73 м (без учета выступающих антенн). Параметры орбиты: перигей – 226 км, апогей – 1881 км.
   Этот спутник представлял собой первую в мире автоматическую космическую станцию. На нем были установлены 12 научных приборов, многоканальная телеметрическая система с запоминающим устройством, система терморегулирования, программно-временное оборудование. В результате полета был обнаружен радиационный пояс, существующий вокруг Земли, изучены распределение плотности и состав атмосферы, концентрация заряженных частиц магнитного и электростатического поля. Третий спутник прекратил свое существование на 10 037-м обороте 6 апреля 1960 года.
   Современные ИСЗ имеют различное назначение. Существуют исследовательские ИСЗ для научных исследований космоса и верхних слоев атмосферы. Спутники связи применяются для ретрансляции радиосигналов между наземными станциями. Метеорологические спутники помогают наблюдать за распределением облачного покрова и теплового излучения Земли с целью получения данных для прогноза погоды. Навигационные спутники служат для определения положения кораблей и самолетов относительно спутника в нескольких точках его орбиты. Военные ИСЗ ведут разведку из космоса, могут поражать другие спутники или наземные цели.
   Без искусственных спутников Земли невозможно развитие многих отраслей науки и народного хозяйства.

Календарь

   Календарь – это определенная система отсчета продолжительных промежутков времени с подразделением их на отдельные, более короткие периоды (годы, месяцы, недели, дни). Само слово «календарь» произошло от латинских слов caleo — провозглашать и calendarium — долговая книга.
   Понятие времени появилось из наблюдения изменений, которым подвержены все окружающие нас материальные тела. А измерять промежутки времени стало возможным, сопоставляя эти изменения с периодически повторяющимися явлениями. В окружающем нас мире таких явлений несколько. Это смена дня и ночи, изменение фаз Луны и вращение Земли вокруг Солнца. Проблема заключается в том, что сутки (период вращения Земли вокруг своей оси), месяц (вращение Луны вокруг Земли) и год (вращение Земли вокруг Солнца) несоизмеримы друг с другом. То есть, большее нельзя поделить на меньшее без остатка. Поэтому необходимо было придумать систему, которая согласовывала бы все эти несоизмеримости и была простой и понятной для большинства людей. История решения этой проблемы – история календаря.
   Попытки согласовать между собой сутки, месяц и год привели к появлению трех видов календарей. Лунные календари, согласовывающие течение суток и лунного месяца; солнечные, в которых приблизительно согласовываются сутки и год, а также лунно-солнечные, согласующие между собой все три единицы времени.
   Сутки – единица времени, равная 24 часам. Но не все знают, что различаются звездные сутки, равные периоду вращения Земли относительно точки весеннего равноденствия, и солнечные сутки – период вращения Земли относительно Солнца. Продолжительность солнечных суток меняется от 24 часов 3 минут 36 секунд в середине сентября до 24 часов 4 минут 27 секунд в конце декабря. Поэтому приняты средние солнечные сутки, равные 24 часам 3 минутам 56,56 секунды звездного времени. Одна минута звездного времени равна 0,9972696 минуты среднего солнечного времени.
   Месяц – промежуток времени, близкий к периоду обращения Луны вокруг Земли. Различают месяцы синодические, сидерические, тропические, аномалистические и драконические. Синодический – период смены лунных фаз. Сидерический – период, за который Луна совершает полный оборот вокруг Земли и занимает исходное положение относительно звезд. Тропический – это период возвращения Луны к одной и той же долготе. Аномалистический – промежуток времени между последовательными прохождениями Луны через перигей. Драконический – промежуток между последовательными прохождениями Луны через один и тот же узел ее орбиты.
   Год – промежуток времени, близкий по продолжительности к периоду обращения Земли вокруг Солнца. Определение его продолжительности еще в древности было одной из важнейших задач. Довольно точное значение этой величины было известно в Древнем Египте. Древнегреческий ученый Гиппарх определил год равным 365 1/4 дня без 1/300 дня, что лишь на 6,5 мин отличается от современных значений года. Различают год звездный, тропический, аномалистический, драконический. Кроме того, есть юлианский и григорианский год. В лунных календарях год равен 12 или 13 синодическим месяцам.
   В основе лунного календаря – промежуток времени между двумя последовательными одинаковыми фазами Луны, то есть синодический месяц. В лунном месяце 29,5 суток. Для того чтобы в течение года начало каждого месяца совпадало с новолунием, нечетные (пустые) месяцы содержат 29, а четные (полные) – 30 суток. Лунный год содержит 354 суток, что на 11,25 суток короче солнечного года. Чтобы первый месяц каждого года приходился на новолуние, в определенные годы в последний месяц добавляют дополнительные сутки. Такие годы называются високосными.
   Лунный год принят у народов, которые занимаются скотоводством, поскольку именно физиологические циклы у животных связаны с лунными фазами, происходящими в течение месяца. Люди видели Луну на небе примерно 28 суток, деля этот период на 4 фазы. Отсюда деление месяца на 4 недели. Хотя, например, в Византии вели счет «восьмидневками» так называемой торговой недели, семь дней которой были рабочими, восьмой – базарным. У вавилонян семь дней недели были связаны с планетами: воскресенье связывали с Солнцем, далее с Луной, Марсом, Меркурием, Юпитером, Венерой и Сатурном. День, управляемый Сатурном, – суббота – считался несчастливым. Поэтому в этот день старались воздерживаться от любых работ. Он стал называться шаббат – покой. Именно отсюда происходит и иудейский обычай воздерживаться от работы в субботу.
   Солнечный календарь использовался земледельцами, для которых важно было правильно определить время начала весеннего сева. Если бы они пользовались лунным календарем, то обнаружили бы, что день весеннего равноденствия, по которому начинали сев, приходится на разные дни лунного месяца. Солнечный календарь впервые появился в Древнем Египте. Год в нем состоял из 365 суток, что было короче действительного на 0,2422 суток. Его начало связывали с первым предутренним восходом звезды Сириус. У египтян было три годовых сезона: наводнение, посев, жатва. Каждый сезон состоял из четырех месяцев. Каждый месяц делился на три десятидневки (декады) или шесть пятидневок (пентад), всего 360 дней. Еще 5 дней добавлялись в честь богов Осириса, Гора, Сета, Исиды и Нефтиды.
   Первоначально древнеримский календарь, состоявший из 295 дней, делился на 10 месяцев, названных по их порядковому номеру: первый – Примидилис, второй – Дуолилис и так далее до Десембера. Продолжительность года была связана с началом и завершением сельскохозяйственных работ.
   В начале VII века до н. э. древнеримский царь Нума Помпилий провел реформу календаря, и к 10 месяцам были добавлены еще 2. Теперь продолжительность года составляла 354 дня. Для того чтобы он начинался в один и тот же сезон, вставлялись дополнительные дни. Первые четыре и вновь прибавленные 11-й и 12-й получили собственные названия. Мартиус был назван в честь бога войны Марса. Априлис – либо от слова aperire — раскрывать, либо от слова apricus — согретый Солнцем. Он посвящался Венере. Майус посвящался богине Земли Майе. Юниус – богине неба Юноне. Януарис, предпоследний месяц календаря, был посвящен богу Янусу – богу небес, или, по другой версии, богу входов и выходов. Считали, что он утром открывал врата Солнцу, а вечером закрывал. Последний месяц был посвящен богу подземного царства Фебрусу.
   Еще в Древнем Египте вследствие несоответствия начала календарного года началу тропического начало календарного года отставало примерно на одни сутки за четыре года. Делались попытки внести исправления. Так, в 238 году до н. э. царь Евергет издал декрет, согласно которому раз в четыре года предписывалось после окончания дополнительных дней перед началом нового года отмечать праздник богов Евергета. Но эта реформа была осуществлена в Египте значительно позже. Она связана с именем Юлия Цезаря. Он пригласил в Рим александрийского астронома и математика Созигена. Последний разработал календарную реформу, которая была утверждена в 46 г. до н. э.
   За начало года было принято 1 января. В новом календаре год насчитывал 365,25 дней. Каждый четвертый год должен был содержать 366 дней. Дополненный год назвали annus bissextus, откуда и произошло слово високосный. В юлианском календаре накапливается разница, равная примерно 1 суткам в 128 лет.
   Наряду с календарем большое значение имеет точка отсчета летоисчисления. В разных странах была своя календарная эра. В Древней Греции отсчет велся от первой Олимпиады – 1 июля 776 г. до н. э.; в Древнем Риме от основания Рима – 21 апреля 753 г. до н. э.; начальной датой византийской эры было сотворение мира 1 сентября 5508 г. до н. э. и др.
   В IV веке н. э. государственной религией Римской империи стало христианство. В 325 г. Никейский собор принял юлианский календарь и установил единые для всей империи христианские праздничные дни, в первую очередь праздник Пасхи. Был принят так называемый «пасхальный предел», который начинается в первый день, следующий за днем весеннего равноденствия и заканчивался 25 апреля. В связи с тем, что христианство стало господствующей религией в Западной Европе, было решено установить новую эру, начало которой связали с датой рождения Иисуса Христа. Монах Дионисий Малый вычислил эту дату. Но летоисчисление от Рождества Христова распространялось по миру очень медленно. Так, в России оно было введено указом Петра Первого только в 1700 г. взамен летоисчисления от сотворения мира. Новый год переместился с 1 сентября на 1 января.
   В Средние века определение равноденствия 21 марта стало заметно не соответствовать реальному весеннему равноденствию. В XVI веке разница составила почти 10 суток. В 1581 г. указом Папы Римского Григория XIII была создана комиссия. Она приняла на рассмотрение календарь, разработанный в 1576 г. профессором Перуджийского университета Луиджи Лилио. 24 февраля Григорий XIII издал буллу о введении нового календаря. Счет дней передвигался на 10 суток вперед. Во избежание повторения ошибок, те года, чей номер заканчивается на 00, а число столетий не делится на 4 без остатка, не считаются високосными. Так високосными были 1600 и 2000 года, а 1700, 1800 и 1900-й содержали 365 дней.
   В 1582 году григорианский календарь был узаконен в Италии, Испании, Португалии, Бельгии, Франции, а также в католической Дании. В Советской России григорианский календарь был введен декретом Совнаркома только в 1918 году.
   В странах, государственной религией которых является ислам, распространены, в основном, лунные календари. В каждом 30-летнем периоде этого календаря 19 лет насчитывают по 354 суток и 11 лет високосных по 355 суток. Летоисчисление ведется от 16 июля 622 года – даты переселения основателя ислама пророка Мухаммеда из Мекки в Медину. Эта дата называется хиджра (по-арабски – «переселение»). Праздничным днем у мусульман считается пятница.
   Создатели лунно-солнечных календарей видели свою задачу в том, чтобы согласовать лунный и солнечный отсчеты времени. Они приняты, в частности, в Израиле и Иране. Современный израильский календарь пришел на смену лунному древнееврейскому календарю, число дней в котором равнялось 354. В новом календаре был введен дополнительный 13-й месяц, продолжительностью 30 дней. Он вставляется семь раз каждые 19 лет. Год с 13 месяцами считается високосным и называется «иббур». Летоисчисление еврейского календаря ведется от даты сотворение мира – 7 октября 3761 г. до н. э. До конца III в. до н. э. новый год начинался с весеннего месяца нисан. Затем начало года было передвинуто на осенний месяц тишри. Праздничным днем у евреев считается суббота.
   В Иране кроме календаря лунной хиджры, принятого в других мусульманских государствах, и григорианского календаря распространен также календарь солнечной хиджры, также ведущий отсчет от 16 июля 622 года. Год начинается с момента нахождения Солнца в знаке Овна, что соответствует 20, 21 или 22 марта. Он содержит 365 или 366 дней. Високосные года располагают по следующей схеме: в каждом 33-летнем цикле 8 високосных лет, 7 из которых повторяются через каждые 4 года, а восьмой – через 5 лет. Неделя начинается с субботы. Официальный нерабочий день – пятница.
   В странах Восточной и Юго-Восточной Азии, в частности Китае, Японии, Корее, Вьетнаме, Таиланде, принят 60-летний календарный цикл. Он представляет собой хронологическую систему, основанную на астрономических циклах Солнца, Земли, Луны, Юпитера и Сатурна. Наблюдая за движениями больших планет – Юпитера и Сатурна, астрономы Древнего Востока установили, что Юпитер совершает свой кругооборот примерно за 12 лет, Сатурн – примерно за 30 лет. За основу цикла было принято время двух оборотов Сатурна и пяти оборотов Юпитера.
   Это соответствовало мировоззрению китайской натурфилософии: число пять являлось символом пяти элементов природы – дерева, огня, металла, воды, земли, которым соответствовали цвета синий или зеленый, красный, желтый, белый, черный. Поскольку в Китае и других странах Восточной Азии принят 12-летний животный цикл, каждому из годов соответствует животное: мышь (крыса), корова (бык), тигр, заяц (кот), дракон, змея, лошадь, овца, обезьяна, петух, собака, кабан. Таким образом, в 60-летнем цикле пять раз повторяются одни и те же животные. Для уточнения года внутри цикла используется цветовая символика.
   Год в этом календаре начинается в новолуние, когда Солнце находится в знаке Водолея, то есть в период от 21 января до 20 февраля. Продолжительность года может составлять 353, 354, 355 или 383, 384, 385 суток.

Керамика

   Раньше керамикой называли все изделия из глины. В настоящее время керамикой называют изделия и материалы, полученные из глин и их смесей с различными добавками путем обжига при высоких температурах – от 700 °C и выше.
   Достижение таких температур стало возможным благодаря появлению гончарного горна.
   На Ближнем Востоке – в Вавилоне и Древнем Египте – для возведения построек стали применять обожженный кирпич. Там же стали изготавливать глазурованные глиняные изделия. Первые глазури представляли собой глину, тщательно растертую с поваренной солью. Позже в состав глазурей стали включать соду и окрашивающие добавки металлов.
   В Месопотамии дома украшались орнаментированными плитками. В процессе их изготовления на слегка обожженный кирпич расплавленной черной стеклянной нитью наносился контур рисунка. Окаймленные нитью места заполнялись сухой глазурью, после чего кирпич подвергался вторичному обжигу. При этом глазурная масса остекловывалась и прочно связывалась с поверхностью кирпича.
   В Древнем Египте появились глазурованные плитки с рельефным рисунком. Ими облицованы подземные камеры пирамиды Саккара. Позже такие плитки стали обычным строительным материалом – египтяне украшали ими стены своих жилищ.
   Большое распространение получили изделия из керамики в Древней Греции. Наиболее известна керамическая посуда, разнообразная по форме, покрытая росписью на бытовые и мифологические темы. Кроме того, изготавливались статуэтки из терракоты – неглазурованной керамики с цветным пористым черепком.
   В Древней Греции и Древнем Риме терракоту также применяли для изготовления черепицы и водопроводных труб.
   В Древнем Риме широко использовался кирпич, из которого сооружались своды перекрытий, пролеты мостов и акведуки.
   Римская парадная посуда оттискивалась в формах с рельефным орнаментом и покрывалась красным лаком. Рецепты приготовления прочных и устойчивых к кислотам красного и черного лаков – основных цветов в античной вазописи – были утрачены, поскольку в Византии лак был вытеснен ангобом, эмалью и глазурью.
   Во всем мире издавна разрабатывались керамические материалы, отличающиеся составом керамической массы, приемами формовки и обжига, обработки и украшения поверхности.
   Наиболее известным керамическим материалом для изготовления посуды является фарфор. Чтобы его получить, понадобились века кропотливой работы и многочисленных поисков.
   Появлению фарфора в Китае во многом способствовали богатые залежи каолина – высококачественной белой глины. Особенно много таких залежей было в провинции Цзянси.
   Во II–I тыс. до н. э. из каолина изготвавливалась посуда. Позже каолин стал сырьем для производства фарфоровидных изделий.
   Для изготовления фарфора каолин необходимо перетереть с минералом, состоящим из полевого шпата и кварца. Позже этот минерал получил название «фарфоровый камень». Образованную смесь закапывали в землю на несколько десятилетий. Вылежавшаяся масса заворачивалась в полотно и долго отбивалась о каменные плиты. Благодаря такой обработке материал становился пластичным и пригодным для изготовления фарфора.
   В VI–VII вв. китайским мастерам удалось получить «голубой, как небо после дождя, блестящий, как зеркало, тонкий, как бумага, звонкий, как гонг, гладкий и сияющий, как озеро в солнечный день» фарфор.
   Сначала все фарфоровые изделия были чисто белыми. А в XIV веке их начали расписывать синей краской (солями кобальта) и ко второй половине XV века появился многоцветный фарфор.
   Фарфор обжигали в специальных огнеупорных коробках в течение трех дней. После охлаждения получали твердые тонкие блестящие изделия. Центром производства фарфора стал город Цзинцжень. Здесь талантливые мастера создавали из фарфора вазы и чашки, фигурки фантастических драконов и невиданных птиц, разнообразных животных и рыб. В городе Нанкине была построена девятиярусная фарфоровая башня высотой в тридцать метров. На углах каждого этажа этой башни висело по восемьдесят колокольчиков, также сделанных из фарфора. При порывах ветра они издавали серебряный звон. В Китае фарфор называли «тсени» – в подражание звуку, издаваемому фарфоровым изделием при постукивании по нему твердым предметом.
   Благодаря Марко Поло, привезшему из Китая много фарфоровых изделий, фарфор проник в Европу и стал очень популярным. Здесь он высоко ценился – наравне с золотом. Поскольку фарфоровые изделия поступали в основном из Индии и Персии, то персидское название материала «фегфур» постепенно трансформировалось в слово «фарфор».
   Тайна изготовления фарфора была государственной тайной Китая и строго охранялась. За ее разглашение отрубали голову.
   Но в конце XVI века француз д’Антрекол сумел все же узнать некоторые секреты производства фарфора. Ему удалось проникнуть в город Цзинцжень, куда иностранцам был запрещен въезд. Там француз увидел, что фарфор получают из белой глины – каолина, в который добавляют порошок циши (фарфорового камня). Он даже смог рассмотреть печи, в которых проводился обжиг фарфоровых изделий. Однако разгадать технологию производства д’Антреколу не удалось. Вернувшись в Европу, он написал книгу обо всем, что узнал и увидел. Но не зная состава каолина и циши, француз не смог полностью постичь тайну производства фарфора: это продолжало оставаться китайским секретом.
   Последний шаг к ее разгадке сделал Иоган Бетгер из Тюрингии. Работая при дворе саксонского курфюрста Августа Сильного, он, по совету физика Э. Чирнхауза, занялся изучением состава фарфора. На разгадку тайны ушло шесть лет.
   В 1709 г. Бетгер вынул из печи две чашечки, которые были такие же тонкие, прозрачные и звонкие при ударе, как и привезенные из Китая, но красного цвета. В 1710 г. по приказу курфюрста Августа в Мейсене был построен первый в Европе фарфоровый завод. Первые изделия этого завода легко узнать по характерной красной окраске.
   Бетгер продолжал работать над тем, как сделать свой фарфор белым. На помощь ему пришел случай. Однажды на его одежду попала пудра с парика. Счищая ее, Бетгер скатал небольшой шарик. Пудра очень напоминала глину. Оказалось, что это каолин. Добавив в него полевой шпат и кварц (именно его называли в Китае фарфоровым камнем), Бетгер получил фарфор, полностью сходный с тем, что привозили из Китая. Стремясь сохранить тайну, Август приказал бросить Бетгера в тюрьму, где тот и умер.
   На мейсенском заводе продолжали изготавливать посуду, подсвечники, люстры и тончайшие статуэтки. В 20-е годы XIX века живописная мастерская мейсенского завода, руководимая И. Г. Герольдом, изготовила замечательные краски для росписи по фарфору.
   Несмотря на смерть Бетгера, скрыть секрет производства фарфора не удалось. Сначала в Вене, Берлине, а затем во многих других европейских городах открывались фарфоровые заводы, развивалось фарфоровое производство.
   В России фарфор стал известен со II-й половины XV века, после путешествия Афанасия Никитина «за три моря». Фарфоровые изделия были предметом роскоши и не выходили за пределы царского дворца.
   Петр I положил начало длительным поискам секрета производства фарфора. Делались попытки выведать секрет производства фарфора в Китае и Саксонии. Однако закончились они безуспешно.
   Разгадкой тайны производства фарфора занялись купцы Гребенщиковы: Афанасий Кириллович с тремя сыновьями. В 1724 году они открыли первую в России фаянсовую фабрику, работавшую на основе гжельских глин. Создать производство российского фарфора, не уступавшего китайскому и саксонскому, удалось Д. И. Виноградову.
   До появления фарфора в Европе большой популярностью пользовались изделия из фаянса – мелкопористой керамики белого цвета, как правило, покрытой глазурью. Свое название она получила от итальянского города Фаэнца. Производить керамическую посуду в Фаэнце начали в 1142 году. Здесь делали кувшины и пиалы, сосуды для хранения вина и оливкового масла. Производство разрасталось, искусство мастеров росло.
   XVI век стал «золотым» веком фаянсовой керамики. По примеру Фаэнцы было открыто производство фаянса во Франции и Нидерландах. Но посуда из Фаэнцы была непревзойденной. Тарелки и кувшины, вазы и чашки делались с ажурными краями, придающими изделиям элегантную утонченность.
   Со временем фаянсу стало трудно конкурировать с фарфором, изделия из которого все в больших и больших количествах поступали на европейские рынки с Востока. В XVIII веке производство фаянса почти прекратилось.
   Но в XIX веке английские керамисты усовершенствовали производство фаянса, и он вновь распространился по всей Европе. Теперь это был английский фаянс. Вслед за Англией фаянс высокого качества стали производить Франция и Германия. И если раньше с целью сбыта фаянсовые изделия обрабатывали под фарфор, то теперь уже фарфоровые изделия стали обрабатывать под фаянс.
   С развитием науки и техники применение керамики вышло за сугубо бытовые рамки.
   В 1837 году, изучая взаимодействие веществ с электрическим полем, английский физик Фарадей предложил новый термин – «диэлектрик». Под этим словом он подразумевал такие вещества, которые имеют большое электрическое сопротивление (больше чем 1·108 ом на см).
   После этого керамика получила широчайшее применение и прочно заняла свое место среди диэлектриков.
   Керамика, использующаяся как диэлектрик, получила название «сегнетоэлектрическая керамика», или «сегнетокерамика». Сейчас из нее делают конденсаторы высокой емкости, терморезисторы и термисторы.
   Схожей по составу с сегнетокерамикой является пирокерамика. Она используется для производства инфракрасных детекторов и устройств тепловидения.
   Изделия из пьезокерамики служат для преобразования механической энергии в электрическую. Это зажигалки для газовых плит, звуковые генераторы, гидролокаторы, ультразвуковые сверла и многое другое.
   Сейчас слово «керамика» охватывает широкий спектр материалов, которые изготавливаются не только спеканием, но и горячим прессованием, формованием методом взрыва, литьем в парафиновые формы. Современная керамика – это посуда и произведения искусства, трубы и радиодетали, автомобильные двигатели и детали космических кораблей, краски и многое другое.

Кинематограф

   Для того, чтобы получить на экране изображение движущегося предмета, необходимо сфотографировать его последовательные положения, а затем показать эти снимки с помощью проектора. Если показывать эти снимки со скоростью 12–14 кадров в секунду и более, человеческий глаз перестает замечать смену картинок на экране, и движение на экране будет казаться ему непрерывным. Именно эта «инерция» глаза лежит в основе кинематографа, мультипликации и телевидения.
   Одним из первых устройств для получения изображений на экране был магический фонарь. В нем изображение, нанесенное на прозрачную пластинку, освещалось источником света и при помощи системы линз проецировалось на белую поверхность (экран).
   

комментариев нет  

Отпишись
Ваш лимит — 2000 букв

Включите отображение картинок в браузере  →