Интеллектуальные развлечения. Интересные иллюзии, логические игры и загадки.

Добро пожаловать В МИР ЗАГАДОК, ОПТИЧЕСКИХ
ИЛЛЮЗИЙ И ИНТЕЛЛЕКТУАЛЬНЫХ РАЗВЛЕЧЕНИЙ
Стоит ли доверять всему, что вы видите? Можно ли увидеть то, что никто не видел? Правда ли, что неподвижные предметы могут двигаться? Почему взрослые и дети видят один и тот же предмет по разному? На этом сайте вы найдете ответы на эти и многие другие вопросы.

Log-in.ru© - мир необычных и интеллектуальных развлечений. Интересные оптические иллюзии, обманы зрения, логические флеш-игры.

Привет! Хочешь стать одним из нас? Определись…    
Если ты уже один из нас, то вход тут.

 

 

Амнезия?   Я новичок 
Это факт...

Интересно

«Библия короля Якова» вдохновила больше текстов популярных песен, нежели любая другая книга.

Еще   [X]

 0 

Занимательная химия (Рюмин Владимир)

автор: Рюмин Владимир категория: Химия

В книге знаменитого ученого-химика Владимира Владимировича Рюмина вы найдете крайне занимательные опыты и превращения химических веществ, каждое из которых можно найти в специализированных магазинах. Дополнения и приложения к тексту расскажут о технике безопасности и правилах поведения в лаборатории, современном строении атома, подробном применении химических элементов в промышленности и многих других интереснейших вещах. Автор, признанный мастер научно-популярного жанра, поможет вашему ребенку собственноручно проводить яркие и наглядные опыты в импровизированной домашней лаборатории, а также подготовиться к изучению школьной химии или же расширить полученные на уроках знания.

Год издания: 2012

Цена: 59.9 руб.



С книгой «Занимательная химия» также читают:

Предпросмотр книги «Занимательная химия»

Занимательная химия

   В книге знаменитого ученого-химика Владимира Владимировича Рюмина вы найдете крайне занимательные опыты и превращения химических веществ, каждое из которых можно найти в специализированных магазинах. Дополнения и приложения к тексту расскажут о технике безопасности и правилах поведения в лаборатории, современном строении атома, подробном применении химических элементов в промышленности и многих других интереснейших вещах. Автор, признанный мастер научно-популярного жанра, поможет вашему ребенку собственноручно проводить яркие и наглядные опыты в импровизированной домашней лаборатории, а также подготовиться к изучению школьной химии или же расширить полученные на уроках знания.
   Данное издание исправлено, дополнено и переработано с учетом новейших достижений химической науки.


Владимир Владимирович Рюмин Занимательная химия

Предисловие издательства

   Будучи прогрессивным педагогом-новатором, Владимир Владимирович разрабатывал собственные оригинальные методики преподавания, ставил необычные опыты, следил за новостями из мира техники и делился ими с учениками. Начав заниматься преподаванием, он издал немало учебных пособий по химии, минералогии, электротехнике и технологии, серию брошюр по технологии производств (мыловарение, изготовление лампадного масла, красок, бетона, отделочных материалов) и по прикладной технологии. Рюмин выпускал научно-популярные журналы «Физик-любитель» и «Электричество и жизнь». Тогда же выходили адресованные самой широкой читательской аудитории книги «Химия вокруг нас», «Техника вокруг нас», «Чудеса техники», «Чудеса современной электротехники», «Беседы о магнетизме», «Беспроволочный телеграф», «Практическая минералогия», «Популярные научные очерки и рассказы». Писал он и более серьезные работы для специалистов – химиков, минералогов, электротехников, инженеров транспорта.
   Окончив преподавательскую деятельность, Владимир Владимирович Рюмин сосредоточился на популяризации науки. Его книга «Занимательная химия» открыла знаменитую серию «Занимательная наука». За 10 лет эта работа Рюмина выдержала 7 переизданий, став самым популярным из его трудов. С каждым изданием он вносил в текст новые изменения, оставляя центром внимания описание простых и эффектных опытов, делая содержание книги более основательным.
   Рано или поздно перед учителями в школе и родителями дома встает острый вопрос: как преподать юному школьнику химию, чтобы он не скучал над толстым учебником с непонятными формулами, а легко и быстро понял все грани этой науки? На помощь придет книга Владимира Владимировича Рюмина, в которой все основные химические законы проиллюстрированы при помощи красочных и понятных опытов, а приложения к основному тексту учат, как правильно обращаться с химическими реактивами, и рассказывают о технике безопасности и самых необходимых приемах работы. Книга переработана с учетом новейших достижений химической науки и будет интересна как тем, кому еще только предстоит изучение химии, так и всем тем, кто хочет применить полученные знания на практике.

Введение
Что такое химия

   Многие, впрочем, и сейчас этого не знают, как не знают и того, что всю жизнь имеют дело с химией.
   «Как же, – скажут они, – мы даже не знаем, что такое химия!»
   И мольеровский герой не знал, что такое проза, – потому-то и не подозревал, что он ею говорит. Кто знаком с химией, нашего утверждения опровергать не станет.
   Химия – это наука о составе веществ и изменении их внутреннего строения. Веществ, а не вещей.
   Вещь может быть сложной по своему устройству и простой по составу и, наоборот, с виду крайне простой, а по составу необычайно сложной.
   Вот как будто совсем простая вещь – полено дров. Между тем по составу веществ, в нем заключающихся, – одна из самых сложных в мире.
   Химия и занимается не самыми вещами, а теми веществами, из которых состоят вещи, минералы, растительные и животные организмы. Эти вещества могут быть химически сложными, разлагаемыми на простые, и химически неразлагаемыми (химическими элементами). Все газообразные, жидкие и твердые вещества, хотя и кажутся сплошными, состоят из отдельных частиц (молекул). Молекулы построены из атомов. Молекулы химических элементов – из одинаковых атомов, а сложных веществ – из разных. Химия изучает строение молекул, перегруппировку в них атомов при химических реакциях (взаимодействии веществ) и явления, сопровождающие эту перегруппировку.
   «Вещество», материя образует все отдельные вещества, весь окружающий нас мир. Зная это, трудно отрицать, что мы, и не будучи химиками, но всю жизнь имея дело с различными вещами, а следовательно, и с веществами, из которых они состоят, тем самым волей-неволей имеем дело и с химией.
   А сколько людей занято химией, чтобы доставить нам все необходимое для жизни! Просыпаясь утром, вы принимаете душ и имеете дело с химическим процессом – действием мыла или шампуня на кожу. Ваша одежда, то есть ткань, из которой она сделана, наверняка синтетическая – получена химическим путем – и покрашена красителями, также полученными химическим путем. Кстати: знаете, из чего состоит большинство современных красок? Они имеют сложный состав – помимо красящего пигмента и пленкообразующего вещества могут содержать в себе различные добавки – растворители, разбавители и вещества, ускоряющие высыхание красок.
   Одевшись и умывшись, вы садитесь пить чай, и опять перед вами дары химии. Листочки чайного дерева не просто засушены, они подвергаются химическому процессу окисления. В чай вы положили кусок-другой сахара. Кто же не знает, что он выделывается на специальных заводах, с помощью сложной химической обработки свекловичного сока? Булка к чаю – продукт химических процессов брожения[2] и последующего выпекания теста.
   В школе вы пишете или, например, рисуете – и видите, что и тут химия вместе с другими науками и техникой пришла вам на помощь, изготовив карандаши, краски и бумагу…
   Химия – удивительная наука! Она научила нас познавать состав небесных тел и даже определять их возраст, вручила нам оружие для борьбы со многими болезнями, является основой и существом многочисленных производственных процессов. Благодаря химии и ее достижениям мы изучаем «поведение» веществ, увеличиваем количество и улучшаем качество нашей продукции.
   Первым химиком в истории был первобытный человек, который развел огонь. Но и до этого времени люди дышали и питались; значит, и до этого в их организмах, неведомо для них самих, совершались химические процессы.
   В наше время без химии и без знания ее обойтись невозможно. Нет отрасли человеческой жизни, которая не имела бы прямой или косвенной связи с этой великой наукой.
   Она учит земледельцев удобрять обрабатываемую почву, врача – лечить больных, художника – писать картины, инженера, рабочего – выплавлять металлы и производить тысячи важнейших продуктов. Даже типографская краска, которая использовалась при печати этой книги, тоже создана с помощью химии.
   Таким образом, часто сами этого не подозревая, мы тесно связаны с химией!
   Познакомимся же с ней! Но произведем это знакомство не по специальному учебнику химии, а по этой книге. Попытаемся на легких, интересных опытах[3] познать основы этой науки.

Глава 1
Химическая «магия» (Реакции соединения)

   Среди фокусов, которыми в прежние времена заезжие «профессора белой и черной магии» поражали обывателей, много таких, которые основаны только на знании химических законов.
   В сущности, это, конечно, не фокусы, а просто более или менее эффектно обставленные химические опыты, и все они легко могут быть проделаны каждым из вас.
   Я покажу вам несколько десятков таких опытов, и вы увидите, что они не только любопытны, но зачастую и весьма поучительны. Знакомство с сущностью этих опытов открывает нам главнейшие законы химии.

Послушный дым

   Смотрите. Я беру ленточку металла магния и один конец ее укрепляю в пробке, пробкою же закупориваю бутылку с отрезанным дном, так что ленточка висит внутри ее. На тарелку наливаю воды, зажигаю магний снизу и ставлю бутылку в тарелку. Вскоре бутылка наполняется белым дымом. Я сейчас заставлю его перейти из бутылки в закрытый стакан. Стакан, находящийся на другом конце стола, прикрываю чайным блюдцем, и – смотрите внимательно – по мере того, как редеет и исчезает дым в бутылке, он появляется и густеет в стакане (рис. 1).
   Заметьте еще, что вода из тарелки проникла в бутылку и стоит там на более высоком уровне, чем снаружи в тарелке. Не кажется ли вам это удивительным? Ведь от нагревания воздух в бутылке должен был расшириться, а не сжаться.
   Но объясним химический смысл этого фокуса. Конечно, дым, получаемый в ходе опыта, рассеивается в воздухе, а в бутылке образуются белые хлопья: результат соединения кислорода воздуха с магнием – оксид магния. Два простых вещества дали сложное.

   Рис. 1. Дым исчезает в бутылке и появляется в стакане

   Поднятие воды под бутылкой объясняется тем, что часть находящегося в ней кислорода соединилась с магнием. Ну а причина появления дыма в закрытом стакане? На дно его я до начала опыта капнул несколько капель нашатырного спирта, а ту сторону блюдца, которая прикрывает стакан, смочил соляной кислотой.
   Соляная кислота – это раствор в воде газа хлористого водорода, а нашатырный спирт – тоже раствор в воде другого газа – аммиака. Оба летучи и, выделяясь, соединяются в виде дыма в микроскопические кристаллики.
   Опыт объясняется, следовательно, просто, но вводит нас сразу в гущу химических понятий, давая нам сведения о существовании таких веществ, как кислоты, основания, соли. Что они в отдельности собой представляют, мы узнаем из дальнейших опытов.

«Три кита» химии

   Исследуя всевозможные химические вещества, ученые разделили их по сходным признакам на группы. Громадное большинство этих веществ удалось разложить на более простые, но часть их до самого последнего времени никак не поддавалась такому разложению, и им приписывалась абсолютная элементарность состава. Когда-то считалось, что все металлы и часть неметаллов являются теми «кирпичами мироздания», из которых построена Вселенная. Однако с тех пор наше представление о делении веществ на простые и сложные значительно изменилось.
   К этому делению я еще вернусь в дальнейшем, а пока укажу, что среди веществ, заведомо сложных, выделяются три группы, имеющие особо важное значение для прикладной химии: кислоты, основания и соли.
   Народная фантазия представляла Землю стоящей на трех китах. Наука давно освободила китов от этой непосильной для них ноши и предоставила Земле свободно нестись в мировом пространстве.
   «Три кита» химии, напротив, все еще несут свою службу, поддерживая стройную систему классификации веществ. Из кислот вы, вероятно, ближе всего знакомы с уксусной, которой столовый уксус обязан своим вкусом. Возможно, что слышали и о других пищевых кислотах: молочной, яблочной, лимонной и пр. Из минеральных кислот, вероятно, знаете серную, а может быть, еще азотную и соляную. Растворимые кислоты окрашивают раствор лакмуса (растительной краски, добываемой из некоторых лишайников) или пропитанную ими бумажку в красный цвет, а легко растворимые в воде основания (щелочи) – в синий.
   Вообще, как кислоты, так и щелочи меняют цвета многих красок, и притом не одинаково. Эта способность их даст нам богатый материал для проделывания очень эффектных химических опытов.
   При соединении кислот с основаниями образуются соли. Характерным примером последних будет хорошо вам знакомая обыкновенная поваренная соль, давшая свое название этому классу соединений.
   Все соли способны образовывать кристаллы, и многие из них не действуют на лакмусовую бумажку. Соли далеко не всегда бесцветны, как поваренная соль: многие из них окрашены. Соли могут вступать в химическое взаимодействие друг с другом, причем в некоторых случаях из растворимых солей получаются нерастворимые, из бесцветных – окрашенные, из солей одного цвета – соли другого цвета. Реакции, при этом происходящие, называются реакциями обменного разложения.
   На этих свойствах солей основана целая серия поразительных опытов-«фокусов», которые я вам собираюсь показать. Но гораздо важнее то, что на тех же свойствах держится техника производства кислот и оснований, солей, красок и крашения пряжи и тканей и других химических производств.

Самая нужная кислота

   Это – серная кислота. Объем производства серной кислоты в любой стране может рассматриваться как показатель, который в определенной мере отражает уровень промышленного развития страны.
   Еще бы! Без серной кислоты химик как без рук. Она необходима для получения большинства других кислот, как минеральных, так и органических, очень многих солей и других химических соединений. Она применяется для превращения древесины в газетную бумагу, для превращения крахмала в сладкую патоку, для получения многих красок, для очистки нефтяных продуктов, в технологии черных и цветных металлов, в коксобензольном и кожевенном производстве и в ряде других производств. И главное, при обработке ею фосфоритов получаются ценные удобрения – суперфосфаты.

Катализаторы химических реакций

   Получение серной кислоты и является как раз примером таких реакций.
   Серная кислота получается соединением серного ангидрида с водой. Серный ангидрид получается, в свою очередь, присоединением атома кислорода к молекуле сернистого ангидрида. С серой и сернистым ангидридом нам еще предстоит в дальнейшем познакомиться, а пока скажу, что сера, сгорая на воздухе, дает газообразный сернистый ангидрид, молекула которого состоит из одного атома серы и двух атомов кислорода. Серный же ангидрид – вещество твердое, в молекуле которого имеется третий атом кислорода. Задача катализаторов – присоединить этот третий атом кислорода к молекуле сернистого ангидрида.
   Решается она двояко: либо в свинцовую камеру вместе с сернистым ангидридом и парами воды вводят небольшое количество оксидов азота, либо в камеру помещают губчатую платину. Первые отдают свой кислород сернистому ангидриду, а сами снова окисляются кислородом воздуха, вторая, сгущая на своей поверхности кислород, окисляет сернистый ангидрид в серный.
   Сейчас в химической промышленности широко пользуются катализаторами для получения весьма многих, преимущественно органических, соединений.

Глава 2
Превращение жидкостей

   Обстановка «магического кабинета», где я собираюсь демонстрировать вам серию опытов, подтверждающих перечисленные выше свойства «трех китов» химии, весьма несложна. Стол, пара совершенно одинаковых бутылок из бесцветного стекла, полдюжины тонкостенных стаканов – вот и все, что пока мне понадобится. Стол может быть заменен низеньким шкафом с раскрытыми дверцами либо обыкновенным столом с табуретом.
   В последнем случае пространство между верхним краем стола, обращенным к зрителям, и полом должно быть закрыто свесившейся со стола скатертью. Стаканы, если не гнаться за сценичностью опытов, можно заменить пробирками (рис. 2) – открытыми цилиндриками с тоненькими стенками, применяемыми в лабораториях. На скрытой от взоров зрителей полке стола-шкафа помещаю запас реагентов (химических веществ, нужных для опытов): твердых – в баночках (рис. 3), растворенных – в склянках (рис. 4).

   Рис. 2. Пробирка

   Рис. 3. Банка

   Рис. 4. Склянка

   Те и другие – с притертыми стеклянными пробками; на тех и других наклеены ярлычки с названиями веществ, в них содержащихся.
   Сядьте неподалеку напротив стола и смотрите внимательно: я начинаю.

Молоко… из воды

   «Незнакомец обмакнул в склянку сухую былинку и стряхнул с нее каплю в воду. Вода осталась такой же чистой и прозрачной, как прежде.
   – Теперь брось туда щепотку соли.
   Кунго повиновался. В ту же минуту на поверхности воды показался беловатый пар, и вся вода стала молочного цвета.
   – Это колдовство! – воскликнул Кунго.
   – Это хлористое серебро! Неуч!»
   Какая реакция описывается здесь романистом и верно ли она описана? Следующий опыт даст вам ответ на эти вопросы.
   На столе пустой стакан. Можете осмотреть его, – в нем нет ничего магического; стакан как стакан. Два таких же стакана, наполовину налитых каждый, насколько можно судить по виду, прозрачной чистой водой, держу в правой и левой руке. Я сливаю воду из обоих стаканов одновременно в стакан, который стоит на столе (рис. 5).
   Чудеса! Лил воду, а стакан наполнился… молоком.
   Но стоит подождать несколько минут, и иллюзия рассеивается – густой белый творожистый осадок опускается на дно стакана, а вода над осадком снова становится прозрачной.

   Рис. 5. Молоко из воды

   Поэтому, если, повторяя мой опыт, вы не захотите испортить его эффект, немедленно прячьте стакан с «молоком» в стол и переходите к другим фокусам. Я же открою вам секрет превращения. В стаканах, которые я держал в руках, была налита не вода, а прозрачные водные растворы: в одном – обыкновенной поваренной соли (хлористого натрия), в другом – ляписа (азотнокислого серебра). Имейте в виду, что ляпис ядовит, обращайтесь с ним с особенной осторожностью, в руки не берите, вынимайте его из баночки, в которой храните, пинцетом (рис. 6); баночка должна быть из темного стекла, так как на свету ляпис разлагается. Растворять азотнокислое серебро необходимо в дистиллированной воде, так как в обыкновенной воде оно дает муть.
   При сливании растворов произошла химическая реакция (взаимодействие) – соли обменялись металлами, входившими в их состав. Получились: хлористое серебро, нерастворимое в воде и вскоре осевшее в виде снежно-белого осадка, и азотнокислый натрий (селитра), оставшийся в растворе.

   Рис. 6. Пинцет

   В последнем нетрудно убедиться, если, осторожно слив жидкость с осадка, выпарить ее в фарфоровой чашечке на спиртовой лампе. Когда вода выкипит, на дне останутся кристаллики селитры.
   Маленькое замечание практического характера: оттого-то и нельзя растворять ляпис в водопроводной воде, что самая, казалось бы, чистая вода содержит всегда в растворе хотя бы следы поваренной соли.
   В лабораториях пользуются описанной реакцией для определения количественного содержания в воде хлористого натрия. Осадив его полностью из отмеренного количества испытуемой воды, осадок высушивают и взвешивают. Химические соединения, в отличие от простой смеси веществ, происходят лишь при наличии строго определенных весовых отношений между составляющими их веществами. Зная вес образовавшегося хлористого серебра, химик умеет вычислить, какое количество соли было в испытуемой воде.

Вода и сок в одной бутылке (Химические индикаторы)

   Наполняю из бутылки один из стоящих передо мной стаканов, и по красивой окраске жидкости вы можете судить, что перед вами вишневый сок. Но мне хочется выпить воды.
   Я переливаю сок в другой стакан, и он снова превращается в воду (рис. 7). Но пить воду эту нельзя. И вот почему.

   Рис. 7. Превращение сока в воду

   В бутылку налита действительно простая вода, но к ней было предварительно прибавлено несколько капель раствора индикатора фенолфталеина (ядовит!). На дно первого стакана я налил еще до начала опыта немного крепкого раствора соды, на дно второго – такой же раствор виннокаменной кислоты.
   Фенолфталеин краснеет в щелочах и солях с преобладающими щелочными свойствами. Сода (двууглекислый натрий) как раз и есть такая соль. Она образована очень слабой угольной кислотой и сильной щелочью – едким натром. Кислоты разрушают эту окраску, поэтому при переливании окрасившегося от соды раствора в стакан с виннокаменной кислотой он снова обесцветился.
   Кстати, о фенолфталеине. Он постоянно применяется в химических лабораториях, служа для указания появления и исчезновения щелочной реакции растворов в так называемом объемном анализе веществ. Как и лакмус, он, следовательно, является химическим индикатором.
   Заменяя фенолфталеин другим органическим красителем – метилоранжем, дающим желтую окраску в щелочах и красную в кислотах, можно в нашем опыте налить из бутылки с водой в один стакан яблочного сока, в другой – вишневого, а в третий – чистой воды. Но и в этом случае пить налитые «напитки» нельзя!

Превращение воды в чернила и обратно

   Передо мной две бутылки – одна с водой, другая пустая – и четыре стакана. Лью в них воду из бутылки, и вы видите, что в четных по порядку стаканах она превращается в чернила, а в нечетных остается сама собой. Отлейте немного полученных чернил в пузырек и при случае удостоверьтесь, что ими отлично можно писать. Беру пустую бутылку и сливаю в нее содержимое из всех стаканов. Встряхиваю бутылку, взбалтываю жидкость. Как видите, бутылка полна чистой воды. Чернил как не бывало!
   Чтобы показать вам этот фокус, я предварительно в воде первой бутылки растворил с пол-ложки танина. (Танин – это сложное дубильное вещество, выделяемое преимущественно из коры акации, ели или каштана.) В четные стаканы я тоже заранее прилил по нескольку капель концентрированного раствора хлорного железа. С этим соединением, как и с другими солями железа, танин дает железо.
   В бутылку, казавшуюся вам пустой, на дно мной было налито немного концентрированного раствора щавелевой кислоты (ядовита!). Совершенно таким же образом можно показать превращение воды в красные чернила и, наоборот, красных чернил в воду, заменив раствор танина раствором салицилового натрия.

Мнимая ошибка физиков (Обесцвечивание хлором)

   Физика учит, что при смешивании синего и желтого цветов получается составной зеленый цвет. В том же убеждены все живописцы. А между тем я легко могу доказать вам, что такое утверждение ошибочно. Синий и желтый – дополнительные цвета, взаимно уничтожающие друг друга. Растворы синей и желтой краски при сливании дают бесцветную смесь. Убедитесь сами. В этом стакане, как видите, синяя жидкость, в этом – желтая. Переливаю их в третий стакан. Перед вами прозрачная вода: синий и желтый цвета уничтожили друг друга…
   Почти уверен, что вас я не введу в заблуждение и вы сами разгадаете тайну такого «нарушения» законов оптики; но кто еще не видел показанных мною раньше опытов, тот, пожалуй, будет поставлен этим опытом в тупик. Вы говорите, что в первом стакане у меня был щелочной раствор лакмуса, в другом – такой же раствор метилоранжа, а в третьем, куда я слил содержимое двух первых, – хлорная вода.
   Вы правы: так оно и было!

Вода – в молоко, молоко – в воду (Обратимость химических реакций)

   Мы уже видели, что можно превратить воду в молоко, получая при сливании бесцветных растворов двух солей белый взвешенный в воде осадок. Теперь могу показать и другой способ получения такого «химического молока», но в отличие от ранее полученного оно может превращаться снова в воду. Вы уже настолько посвящены мною в секреты превращения различных жидкостей друг в друга, что нет надобности показывать вам этот опыт; достаточно будет, если я расскажу вам, как его надо проделать.
   Возьмите два совершенно одинаковых графина. Налейте наполовину один из них прозрачным бесцветным раствором соды. Другой графин, со слабым раствором соляной кислоты, спрячьте на полке нашего «магического» стола. Не забудьте, что уровень жидкости в нем должен быть существенно ниже, чем в первом, так как из первого вам придется часть раствора отлить. На стол поставьте стакан, наполовину наполненный раствором хлористого кальция. Все названные жидкости бесцветны, прозрачны и по внешнему виду ничем не отличимы от чистой воды. Сказав, что вы умеете превращать воду в молоко, долейте из первого графина стакан, что стоит на столе.
   Сода (двууглекислый натрий) даст с хлористым кальцием нерастворимый в воде углекислый кальций и остающийся в растворе хлористый натрий (поваренную соль). Жидкость в стакане замутится и издали будет вполне похожа на молоко.
   Поднесите стакан ко рту (но ни в коем случае не пейте!), как будто пробуя на вкус, сняв одновременно графин со стола и поставив его на полку. Сделав вид, что вкус молока вам не понравился, незаметно подмените графин, взяв с полки тот, в котором у вас раствор соляной кислоты, и вылейте в него «молоко» обратно. Взболтайте жидкость и покажите зрителям, что она вновь обратилась в воду. В этом случае действительно будет обратное превращение – только, конечно, не молока в воду, а углекислого кальция снова в растворимый хлористый кальций.
   Но смотрите не перепутайте второпях графины!

Превращение воды в «кровь» (Реакция качественного анализа)

   На столе перед вами стакан с водой. Беру кусок воска или парафина и отделяю от него крохотный кусочек, остальное передаю вам. Можете убедиться, что это действительно воск или парафин, которые в воде, как вам известно, нерастворимы. Заодно осмотрите внимательно и мою «волшебную палочку» (рис. 8). Это самая обыкновенная стеклянная палочка. На ваших глазах прилепляю на ее конец свой кусочек воска и начинаю помешивать ею воду в стакане. Ничего не происходит. Неужели опыт не удался?
   Подождите. Считайте до десяти.
   Как только вы скажете «десять», вода мгновенно превратится в «кровь».
   Поднимаю стакан, и вы видите – он до краев полон «крови».


   Рис. 8. «Волшебная палочка»

   В крупинке воска, которую я отделил от целого куска, мной был предварительно спрятан крошечный кристаллик роданистого аммония. В воду заранее добавлено несколько капель хлорного железа с соблюдением осторожности, чтобы она не пожелтела. В противном случае следует вылить часть раствора и долить стакан чистой водой. Когда вы сказали «десять», я слегка надавил концом палочки на дно стакана: этим я раздавил кристаллик роданистого аммония, освободив его от восковой оболочки. После вступления в реакцию роданистого аммония с хлорным железом получилось роданистое железо, оно и окрасило воду в кроваво-красный цвет.
   Наш «фокус» ежедневно проделывают в химических лабораториях всего мира. Эта в высшей степени чувствительная реакция служит для обнаружения малейших следов железа при качественном анализе, то есть исследовании, из каких химических элементов состоит данное сложное вещество или смесь веществ.

Как одной краской красят в разные цвета

   Ну вот, отвар готов; наливаю его в три тарелки и приступаю к крашению. В первую тарелку погружаю лоскуток белой ткани и вынимаю его зеленым; во вторую погружаю такой же лоскуток, но он становится пурпурным; третий лоскуток в третьей тарелке делается пунцово-красным. Это химическое «чудо» и сотни ему подобных являются самым обыкновенным приемом красильщиков пряжи и тканей. Его знали еще красильные мастера Древнего Египта и Индии, где оно практиковалось за тысячи лет до нашей эры.
   Называется оно окраской по протраве. Тряпочки, которые я погружал в одну и ту же краску, окрашивались в разные цвета потому, что я до начала опыта пропитал их различными веществами, после чего все их высушил. Первую я обработал раствором квасцов, вторую – раствором поташа (карбонатом калия), третью смочил соляной кислотой. Одна и та же краска, вступая в химическую реакцию с разными протравами, дает различно окрашенные соединения.

Секрет старых красильщиков

   В прошлом веке было не так. Выбор красильных веществ в те времена не отличался особым богатством, так что мастерам красильного дела приходилось изыскивать способы, как одним и тем же красильным пигментом окрашивать пряжу и ткани в различные цвета.
   Одной из излюбленных старыми мастерами красок был отвар кампешевого дерева. Его иногда можно было найти в продаже, так как приготовляемые из него краски безвредны и применялись для окраски пищевых веществ. (К сожалению, надо отметить, что безвредность не принадлежит к числу достоинств большинства искусственных органических и минеральных красок.) Если бы вы нашли в продаже кампешевое дерево (оно продавалось в виде стружек), отварили его в тонкостенной колбе и после этого разлили отвар по чашкам и прилили к нему в одну чашку уксуса, в другую – раствора квасцов (двойная сернокислая соль алюминия и калия, натрия или аммония), в третью – раствора хлорного железа, вы бы поняли, как одной и той же краской можно красить в разные цвета.
   Химические реактивы можно использовать для определения подделок пищевых продуктов. Кампеш, например, служил прекрасным средством, чтобы уличить булочников в прибавке квасцов к муке, из которой выпекались булки. Прибавляли же квасцы к муке с целью улучшить цвет хлеба и увеличить его пористость. Нельзя сказать, чтобы эта примесь была смертельно ядовита, но, во всяком случае, она не вполне безвредна для здоровья потребителей хлеба. Лучшим способом обнаружить ее является вымачивание испытуемого хлеба в свежем спиртовом настое кампешевых стружек, к которому прибавлено небольшое количество углекислого аммония. Пропитавшийся настоем кампеша хлеб вынимают из жидкости и сушат в теплой печке. Если в нем были квасцы, то, в зависимости от их количества, хлеб приобретает более или менее выраженный синий цвет. При отсутствии квасцов цвет высушенного хлеба будет красно-бурый.
   Гораздо вреднее и опаснее, чем подмесь квасцов, прибавка к затхлой и низкосортной муке толченого порошка медного купороса. Между тем в начале прошлого века булочников неоднократно уличали в таком «сдабривании» хлеба. Чтобы обнаружить эту примесь, хлеб смачивали раствором уксусной кислоты и затем – раствором желтой кровяной соли (железисто-синеродистого калия). В случае присутствия солей меди хлеб при такой обработке окрашивается в шоколадный цвет.

Забытое слово

   Отварите стружки сандала в слабом растворе щелочи (едкого натра или кали), разделите отвар на две порции и прибавьте к одной из них раствор хлористого кальция, а к другой – хлористого бария. Получите так называемые лаки фиолетового цвета, применявшиеся в обойном производстве. Другую часть стружек нужно настоять на спирту; спирт окрасится в очень красивый оттенок красного цвета. Оттого-то и применялся в старое время сандал в виноделии, что при его помощи из воды, спирта и карамели готовили «виноградные вина» без… единой виноградинки. Недаром в конце 80-х годов XIX века из Москвы вывозилось «виноградных вин» больше, чем ввозилось в нее, хотя, как известно, виноград в Москве не растет…
   Отсюда понятно и выражение «насандалить нос». Известно, что от неумеренного употребления спиртных напитков нос краснеет, сандал же красит тоже в красный цвет.

«Канцелярское семечко»

   Самой великолепной красной краской является кармин. Кто рисует акварелью, тот должен знать, что это самая дорогая краска. Вы знаете, из чего делают настоящий кармин? Это единственная краска, которая в наше время получается из животных. Раньше использовались красящие вещества, вырабатываемые организмами некоторых моллюсков (пурпур древних и сепия), а теперь и эти вещества и кармин готовят искусственно. Только еще, пожалуй, высокосортная акварельная краска этого цвета делается из карминовой кислоты, производимой самками насекомых кошенили. Кошениль – кактусовая ложнощитовка – насекомое, культивируемое на кактусах-опунциях[4]. Есть, однако, и у нас насекомое кермес, или дубовая кошениль, в которой содержится то же красящее вещество, как и в кошенили, и которая некогда служила источником для получения кармина. Было время, когда кермес составлял ценный предмет вывоза в Западную Европу из Украины и Польши. Польские паны даже собирали оброк со своих крепостных кермесом. Теперь европейский кермес совершенно забыт, да и привозную кошениль можно достать с большим трудом, в особенности настоящую. Подделывают же ее самыми разнообразными способами – вплоть до продажи вместо настоящих насекомых… комочков глины с примесью клея и дешевой краски, обсыпанных тальком… Раньше кошениль была в ходу у красильщиков и почему-то косила курьезное название «семечка», и притом «канцелярского». Но что это «канцелярское семечко» не что иное, как засушенные насекомые, в этом легко убедиться, размочив крупинку кошенили и рассматривая ее в увеличительное стекло. Красили этим препаратом, отваривая его в мягкой (это обязательно!) горячей воде и осаждая из раствора лаки. Лаками в красильном деле называются соединения естественных растительных и животных красок с солями металлов. Ничего общего с обыкновенным лаком – жидкостью, дающей при высыхании блестящую гладкую пленку, – они не имеют.
   Из водного раствора краска осаждается квасцами; отфильтрованный осадок надо высушивать не нагревая. Если его растереть с примесью растительных клеящих веществ, то и получится кармин. Попробуйте, если случайно достанете кошенили, приготовить сами эту дорогую краску неподражаемого красивого оттенка, а заодно можете получить ряд карминовых лаков от темно-малинового до изжелта-красного цвета. Они тоже применяются в акварельной и масляной живописи.
   Готовятся карминовые лаки растворением полученного квасцового осадка и приливанием к нему растворов уксуснокислого свинца, хлористого олова и других солей тяжелых металлов. Кармин применялся для подкраски вин и съестных, преимущественно кондитерских, продуктов. Лаки его шли, помимо окраски пряжи и тканей в ситценабивном и обойном деле, и для изготовления красных чернил.
   Все это было и быльем поросло. Хотя и сейчас в некоторых руководствах химической технологии говорится о применении кошенили для крашения, но нигде она теперь уже для этого не применяется: ее вытеснили дешевые краски, полученные химическим путем.

Химия органическая и неорганическая

   «Понятия меняются, слова остаются». Как это верно! Как часто приходится слышать: «Зажги электричество», «Погаси электричество», хотя говорящему отлично известно, что электрическую лампочку не зажигают и не гасят, а включают в цепь тока и выключают из нее. К словам, пережившим понятия, которые в них раньше вкладывались, относятся и обозначения двух отделов химии, по традиции именуемых неорганической и органической химией. Долгое время химики, не умея изготовить большинство тех сложных химических соединений, которые входят в состав органов растений и животных, объясняли свое неумение тем, что эти вещества образуются в растениях и животных под действием особой «жизненной силы» и не могут быть синтезированы в колбах и ретортах[5].
   Такого же взгляда придерживался и знаменитый немецкий химик Веллер, которому личным опытом довелось убедиться в ошибочности этого взгляда. Он из несомненно неорганических соединений азота и углерода с кислородом получил сложное вещество, оказавшееся известным ранее типичным «органическим» соединением – мочевиной.
   Теперь мы твердо знаем, что никакой «жизненной силы» для получения любого вещества, входящего в состав растений и животных, не нужно, что все они могут быть построены из составляющих их элементов. То обстоятельство, что еще не все они искусственно получены, нимало нас не смущает. Не полученные при современных средствах синтеза будут получены, когда эти средства усовершенствуются.
   В действительности же все так называемые «органические» соединения – это соединения углерода. В отличие от других элементов углерод способен давать многие десятки тысяч соединений с другими простыми веществами. Исключительно для удобства изучения все многообразные соединения углерода сводятся в отдельную от химии других элементов дисциплину, «по старой памяти» называемую органической химией.
   Самый же главный курьез состоит в том, что сейчас в курсах «органической» химии изучается громадное число таких углеродистых соединений, которых не найти ни в одном растении и ни в одном животном. Начало такому синтетическому построению «органических» веществ, не существующих в природе, творимых химиком в его колбах, ретортах и заводских аппаратах, положило случайное открытие восемнадцатилетнего студента Перкинса.
   Перкинс задумал изготовить синтетически лечебное вещество хинин, извлекаемое из коры хинного дерева. Получив в течение своих изысканий какое-то новое соединение, он захотел изучить его растворимость и, растворив в спирте, увидел, что раствор имеет великолепный фиолетовый цвет.
   «Нельзя ли его использовать в качестве краски?» – подумал Перкинс. Оказалось, что очень даже можно: раствор отлично окрашивает шерсть и шелк в красивый лиловый цвет. Перкинс махнул рукой на науку, бросил университет и основал первую в мире фабрику искусственных «органических красок». Вслед за ним сотни других химиков стали синтезировать все новые и новые соединения углерода, нашедшие применение не только в качестве красителей, но и как дезинфицирующие, анестезирующие (обезболивающие), лекарственные, отравляющие и взрывчатые вещества.

Фабрики красок – предприятия далеко не невинные

   Производство искусственных органических красок, зародившееся в Англии, там не очень прижилось и вскоре перекочевало в Германию.
   До мировой войны 1914–1918 годов Германия была чуть ли не монополистом в этой области, и даже США, с их высоко развитой техникой, импортировали краски для текстильной промышленности из Германии.
   Вскоре после начала войны запасы купленных в Германии красок всюду истощились, и текстиль «обесцветился». Это, конечно, полбеды, а плохо было то, что немцы тотчас переключили свои фабрики красок на изготовление взрывчатых и отравляющих веществ.
   Вскоре и в нашей стране удалось создать и развить свою красочную промышленность. Это очень сложная отрасль химической промышленности, и неудивительно, что добиться в ней успехов нам удалось только после настойчивых трудов.
   В 40-х годах XX века мы овладели производством самых сложных органических красок, в том числе в конце 1935 года такой широко применяемой в текстильном деле краски, какой является индиго.
   Чтобы дать вам понятие, какое это непростое дело, скажу, что изобретатель синтетического индиго Байер потратил на предварительные опыты огромное количество средств и… 20 лет упорного, настойчивого труда.

Что слаще сахара?

   Есть ли вещества слаще сахара? Да, есть. Ряд производных органической бензойной кислоты – сахарины – в 200–400 раз слаще сахара. Все они имеют неприятный привкус и, в отличие от сладких углеводов, не питательны. Первым был открыт так называемый ортосульфамин бензойной кислоты. Словечко для нехимика сложноватое, химику же оно поясняет строение молекулы этого вещества.
   История его открытия довольно любопытна. В 1879 году в лаборатории профессора Ремсена работал политический эмигрант из царской России, переселившийся в США, химик Фальберг. Как-то, придя из лаборатории домой обедать, он удивился, почему хлеб такой сладкий. Жена же его уверяла, что хлеб как хлеб, вовсе не сладкий. Фальберг попросил жену протянуть ему ее ломоть, чтобы он мог откусить от него, не беря в руки. Хлеб, действительно, оказался несладким. Тогда Фальберг сообразил, что, как ни тщательно он мыл руки перед обедом, все же, значит, на них сохранился вкус того вещества, которое он готовил в лаборатории в этот день, – сульфаминбензойной кислоты. Значит, она должна быть необычайно сладка на вкус. Бросив обед, химик помчался в лабораторию и убедился в правильности своего предположения. Изготовленное им соединение, действительно, оказалось в 280 раз слаще сахара. Вскоре он стал готовить его фабричным путем, и немедленно у него нашлись конкуренты, запатентовавшие фабрикацию других, еще более сладких, производных бензойной кислоты.
   Настоящее назначение сахарозаменителей – заменять сахар больным, которым настоящий сахар есть вредно.

Золото растворимое и растворенное

   «…А занятия алхимиею, считавшеюся ключом ко всем познаниям, венцом учености Средних веков, в которой заключалось детское желание открыть совершеннейший металл, который бы доставил человеку все!.. Представьте себе какой-нибудь германский город в Средние века, эти узенькие, неправильные улицы, высокие пестрые готические домики, и среди них какой-нибудь ветхий, почти валящийся домик, считаемый необитаемым, по растреснувшимся стенам которого лепится мох и старость, окна глухо заколочены, – это жилище алхимика. Ничто не говорит в нем о присутствии живущего, но в глухую ночь голубоватый дым докладывает о неусыпном бодрствовании старца, уже поседевшего в своих исканиях, но все еще неразлучного с надеждой, – и благочестивый ремесленник Средних веков со страхом бежит от жилища, где, по его мнению, духи основали приют свой и где, вместо духов, основало жилище неугасимое желание, непреодолимое любопытство, живущее только собою и разжигаемое собою же, возгорающееся даже от неудачи, – первоначальная стихия всего европейского духа, – которое напрасно преследует инквизиция, проникая во все тайны мышления человека: оно вырывается мимо и, облеченное страхом, еще с большим наслаждением предается своим занятиям».
   В прекрасной сказке «Что рассказывал ветер о Вальдемаре До и его дочерях» Андерсен так описывает средневекового делателя золота: «Вальдемар До был горд и смел, но также и знающ. Он много знал. Все это видели, все об этом шептались. Огонь пылал в его комнате даже летом, а дверь всегда была на замке; он работал там дни и ночи, но не любил разговаривать о своей работе: силы природы надо испытывать в тиши. Скоро, скоро он найдет самое лучшее, самое драгоценное на свете – красное золото. От дыма и пепла, от забот и бессонных ночей волосы и борода Вальдемара До поседели, кожа на лице морщилась и пожелтела, но глаза по-прежнему горели жадным блеском в ожидании золота, желанного золота. Но вот зазвонил колокол, в небе заиграло солнышко. Вальдемар До лихорадочно работал всю ночь, варил, охлаждал, мешал, перегонял. Он тяжело вздыхал, горячо молился и сидел за работой, боясь перевести дух. Лампа его загасла, но уголья очага освещали бледное лицо и впалые глаза. Вдруг они расширились. Глядит в стеклянный сосуд. Блестит… Горит, как жар. Что-то яркое, тяжелое. Он поднимает сосуд дрожащею рукой и, задыхаясь от волнения, восклицает: «Золото! Золото!» Он выпрямился и высоко поднял сокровище, лежащее в крупном стеклянном сосуде. «Нашел! Нашел! Золото!» – закричал он и протянул сосуд дочерям, но… рука его дрогнула, сосуд упал на пол и разбился вдребезги. Последний радужный мыльный пузырь надежды лопнул».
   Попробуем и мы, по примеру алхимиков, поискать способ получения «золота из воды».
   Пока вы читали отрывки из Гоголя и Андерсена, я вскипятил в двух колбах воду. Выливаю из них кипяток в третью, большей вместимости, и накрываю ее платком. Минуту терпения! Готово! Снимаю платок и передаю вам остывшую колбу. Какая красота! Какой блеск! Она вся наполнена мельчайшими чешуйками золота, которые так и искрятся в лучах солнца. Ставлю потом колбу на сетку, лежащую на треножнике, зажигаю под сеткой спиртовую лампочку, – и через несколько минут «золота» как не бывало: оно сплошь растворилось в кипящей воде. Нет надобности, конечно, говорить, что это и не было золото.
   В колбочках отдельно я вскипятил растворы уксуснокислого свинца (ядовит!) в дистиллированной воде и йодистого калия. Сливая их вместе, получим путем обменного разложения этих солей две новых – уксуснокислый калий, оставшийся в растворе, и йодистый свинец. Последний растворим только в горячей воде, а при охлаждении раствора выпадает из него в виде мелких чешуйчатых кристалликов с золотым блеском. Это, пожалуй, самый красивый из всех химических опытов.
   По поводу внешнего сходства кристаллического йодистого свинца с крупинками золота и его растворимости в воде мне хочется сказать несколько слов об ошибке средневековых алхимиков и о возможности действительного получения золота из других веществ, а также и извлечения его из воды. Алхимики верили в существование «первичной материи» и не различали понятий о сложных и простых веществах. Их ошибка состояла в том, что они все свое внимание обратили на физические свойства тел, а не на их химический состав. Они надеялись, что, комбинируя разные вещества, обладающие отдельными свойствами золота, можно в конце концов получить и само золото. В особенности пленяла их мысль превратить в золото тяжелую и блестящую ртуть, придав ей твердость и желтый цвет. Оттого обычно они и смешивали ее для этого с твердой и желтой серой. По их мнению, сера должна была придать ртути недостающие последней свойства. Но мнение их было ошибочным, так как, соединяясь, вещества утрачивают свои физические свойства и приобретают новые.
   Так, сера, соединяясь с ртутью, давала совсем не золото и даже не новый металл, а красную краску – киноварь. Зато они случайно оказались правы в предположении, что есть какая-то связь между золотом и ртутью. В 1924 году один германский ученый, пропуская через ртутные пары электрический ток высокого напряжения, превратил, как он думал, после долгого времени, часть ртути – правда, крайне ничтожную – в золото. Это открытие было опровергнуто дальнейшими опытами, но, во всяком случае, оно не имеет практического значения: такое искусственное золото обошлось бы в 10 ООО раз дороже добываемого в золотоносных породах. С теоретической же стороны оно было бы очень интересно, лишний раз доказывая, что державшееся свыше ста лет разделение веществ на сложные и простые чисто условно. Впрочем, для химика-практика это мало меняет дело, так как получать искусственное золото заводским путем вряд ли когда-нибудь будет доступно. Скорее мы можем рассчитывать научиться выделять его из морской воды.
   Чего только не содержит в себе вода морей и океанов! Омывая берега континентов и островов, питаясь водами рек, сбегающих со всей поверхности суши, за миллионы веков своего существования океаны накопили в себе колоссальные запасы всевозможных химических соединений, выщелачиваемых водою из земной коры. В числе этих веществ обнаружено в морской воде и золото в виде соединения с хлором. Но какой же это слабый раствор! В 200 ООО тоннах океанской воды содержится не более 1 грамма золота (а по новейшим анализам даже и того меньше). Самые бедные земные золотоносные породы, разработка которых уже почти не оправдывается, содержат в 1200 раз больше этого металла.
   Но зато количество воды в океанах так колоссально велико (1200 миллионов кубокилометров), что, если бы выделить из нее все это золото, его получилось бы около 4 миллиардов тонн. Все население земного шара исчисляется приблизительно в 7 миллиардов. На долю каждого из нас, следовательно, приходится теоретически около полутонны морского золота. Столько весит золотой «кубик», грани которого равны 30 сантиметрам.
   Не думайте, что попыток химического извлечения золота из недр океана не делалось. Их было много, некоторые из них были с научной точки зрения более или менее удачны, но с экономической стороны все они пока не более успешны, чем попытки древних алхимиков превратить в золото дешевые металлы. Золото океанов ждет еще того химика, который найдет дешевый способ извлечь его на поверхность.

Исторический курьез

   Гальваническое золочение, о котором сказано выше, – это частный случай гальваностегии – покрытия одного металла другим при помощи электрохимического процесса разложения током соли данного металла. Гальваностегия и гальванопластика (получение металлических копий с рельефных изображений) были открыты в России в 1838 году Морицем Якоби. Заметив, что осевшая на отрицательном полюсе гальванического элемента медь, отделяясь от него, дает с него слепок, Якоби стал покрывать слепки с рельефных изображений графитом и осаждать на них слой меди, получая копии оригиналов. Он писал своему великому современнику Фарадею: «Я буду иметь честь послать вам рельеф из меди, оригинал которого сделан из пластического вещества, поддающегося в руках художника всем изменениям. При помощи этого метода сохраняются все мельчайшие особенности оригинала, теряющиеся при отливке». Французская академия наук наградила за это открытие Якоби золотой медалью.

Глава 3 Опыты с газами

   Много лет тому назад один известный ученый писал другому: «Опишу вам опыт страшный и ужасный…» – а речь-то шла всего-навсего о разряде лейденской банки[7], опыты с которой теперь безбоязненно проделывает любой школьник. Однако ученый был прав, называя опыт ужасным, так как он иной раз оканчивался смертью экспериментатора (например, смерть Доппельмейера в 1750 году).
   Отчего же то, что казалось раньше страшным, да и в самом деле таким было, теперь никого не пугает? Оттого, что люди научились как следует обращаться с лейденской банкой, чтобы ее разрядом не причинять вреда ни себе, ни другим.
   Химику подчас приходится иметь дело с веществами куда более опасными. Даже при самом поверхностном знакомстве с этой наукой нельзя избежать встречи с веществами, которые могут оказаться очень опасными при неумелом обращении с ними. Немало химиков поплатились здоровьем и даже жизнью, впервые работая с такими веществами. Зато теперь мы знаем, как обезопасить те страшные силы, которые в них скрыты, и безбоязненно проделываем с ними всевозможные опыты. «Нет плохих ролей, а есть плохие актеры», – уверял какой-то драматург. Так и мы скажем, что «нет опасных веществ, а есть неумелые экспериментаторы». Мы постараемся не попасть в их число. Хотя и говорят: «Тот не ездок, кто под конем не бывал; тот не химик, у кого ни разу водород не взорвало», с последним я не согласен. Химик должен быть осторожен и аккуратен, а у осторожного и аккуратного человека никаких непредвиденных «случаев» быть не должно. А потому, приняв все меры предосторожности, займемся теперь получением «страшных газов».
   Кто не слышал об убийственных газах на полях сражений мировой войны? Кто не читал предсказаний, что последующие войны станут «химическими», что в них главная роль отведется отравлению противника смертоносными, всюду проникающими ядами? На первый раз мы познакомимся с газом, хотя и не ядовитым и не применяемым в химической войне, но тем не менее весьма опасным и требующим наибольшей осторожности при его получении.

Самый легкий газ

   Самый легкий из всех газов называется водородом. Он в 14 раз легче воздуха. Воздух же, надо заметить, в 770 раз легче воды. Таким образом вода, с которой мы все так хорошо знакомы, заключает в своем составе наиболее легкое из всех известных нам на земле веществ. А что это так, что вода не простое тело и водороду недаром дано его прозвище, я сейчас вам докажу. Мы все безбоязненно пьем воду, она необходима для поддержания нашей жизни, она в количестве 58 процентов входит в состав нашего тела. Дело в том, что водород не растворен в воде, как сахар в стакане чая: он вместе с другим газом, кислородом, образует воду. В том-то и заключается удивительная тайна химических превращений, что вещества, вступая в соединения друг с другом, дают совершенно новые вещества, а не простую смесь начальных веществ.
   Перейдем к некоторым опытам. Перед вами две двугорлые склянки, наполненные каждая на 2/3 водой; их горла плотно заткнуты проваренными в парафине мягкими и упругими пробками; через первую пробку первой склянки пропущена почти до самого дна склянки стеклянная трубка, оканчивающаяся воронкой. Вторая пробка этой склянки соединена с первой пробкой второй склянки изогнутой под прямыми углами стеклянной трубкой, которая в первой склянке опущена лишь немногим ниже пробки, а во второй доходит почти до дна. Из последней пробки выходит газоотводная трубка, изогнутая, как показано на рис. 9. Оттянутый кончик ее с узким отверстием погружен в воду пневматической ванны. Роль последней может играть обыкновенная глубокая тарелка.
   Перед тем как приступить к опыту, я самым тщательным образом замазываю все пробки замазкой, чтобы газ, который мы станем добывать, не нашел нигде выхода через зазоры между стеклом и пробкой. Наполнив два-три узких и высоких стеклянных цилиндра водой, я прикрываю их квадратными кусочками матового стекла.
   Цилиндры, при нужде, можно заменить обыкновенными стеклянными бутылками из-под минеральной воды. Здесь же на столе у меня штатив с пробирками и полотенце. Как можно дальше от прибора для получения газа, всего лучше – на особом столике, поставленном в нескольких шагах, – спиртовка с колпаком (рис. 10).

   Рис. 9. Получение водорода

   В школах обычно получают водород в подобных приборах, действуя серной кислотой на цинк. Вы, вероятно, знаете, что серная кислота в высшей степени гигроскопична и, в большинстве случаев, хорошо растворяет металлы, образуя соответствующие сернокислые соли и выделяя водород. Применяемый для наполнения аэростатов водород долгое время добывали подобным образом; только вместо дорогого цинка брали дешевое железо в виде железного лома.
   Однако я покажу вам другой способ получения интересующего нас газа. Он гораздо удобнее и менее опасен. Не будем забывать, что серная кислота – это вещество, с которым чем меньше будем иметь дела, тем лучше, особенно когда нельзя обойтись кап-лей-другой, а приходится работать с относительно большими ее количествами.
   Я воспользуюсь тем, что многие металлы вытесняют водород не только из кислот, но и из воды. Правда, в большинстве случаев такое разложение происходит лишь при очень высокой температуре, но, к счастью, есть некоторые металлы, способные разлагать воду и при обыкновенной температуре.

   Рис. 10. Спиртовка

   К таким металлам принадлежит кальций. Я храню его в баночке с плотно притертой пробкой. Как видите, он залит какой-то жидкостью. Это – керосин, на который кальций не действует химически. Зато на воздухе этот металл быстро окисляется, ржавеет, превращается в известь (негашеную). Тот же процесс происходит под водой, только в этом случае образовавшийся оксид соединяется с избытком воды в так называемую гашеную известь. Вынув кусочек серовато-белого металла щипчиками, осторожно обсушиваю его фильтровальной бумагой, удаляя следы керосина, не касаясь металла руками. Теперь смотрите: я вынимаю из первой склянки первую пробку, быстро бросаю куски кальция в воду, сейчас же вновь закупориваю банку и обмазываю пробку замазкой. Куски металла, упав на дно склянки, покрываются пузырьками газа, которые, оторвавшись от поверхности, быстро всплывают вверх.
   Вскоре жидкость в банке кажется словно кипящей. Выделяющийся газ вытесняет, вернее, увлекает с собой воздух и идет с ним вместе во вторую склянку, а оттуда из газоотводной трубки – в окружающую атмосферу, булькая пузырьками через воду. Наполнив одну из пробирок водой, закрываю ее пробкой, переворачиваю и опускаю ее конец в воду тарелки, играющей у нас роль пневматической ванны. Отвожу пробку в сторону и держу отверстие пробирки над отверстием трубки.
   Пузырьки газа, ранее выходившие через воду, идут в пробирку, вытесняя из нее воду. Вскоре пробирка наполняется газом. Опять закрываю ее пробкой, вынимаю из воды и быстро несу к столику, на котором стоит спиртовка. Держа пробирку отверстием вниз, подношу ее к пламени и открываю.
   Слышали свист? Он показывает, что водород в пробирке смешан с воздухом и обращаться с ним надо осторожно. Нужно, следовательно, подождать немного, пока выделяющийся водород вытеснит следы воздуха из аппарата. А чтобы не сидеть без дела, прочтите страничку из книги одного английского химика о том, как иногда может быть опасен взрыв водорода.
   Вот что он пишет: «Несколько лет тому назад рабочие, занятые при постройке большого парового котла для германского военного судна, по небрежности оставили внутри его несколько кусков цинка; им в голову не приходило, что этим они могут причинить смерть многим своим товарищам и повергнуть много рабочих семей в глубокое отчаяние. Паровик был поднят на судно и установлен на место. Несколько времени спустя судно отправилось в пробное плавание. Трюм был переполнен занятыми кочегарами; машины впервые дрогнули и быстро погнали мощное судно по морю. Вода за это время нагрелась до чрезвычайно высокой температуры, и цинк быстро растворялся в ней, освобождая при этом значительное количество водородного газа. Этот газ вместе с воздухом образовал в паровике страшно взрывчатую смесь. Люди, работавшие вокруг паровика, конечно, ничего этого не подозревали, а между тем котел постепенно наполнялся все больше и больше этой смертельной смесью. Как вдруг, без малейших предупредительных признаков, с ослепительным блеском и оглушительным громом большой паровик разорвался на части, убив или искалечив всех находившихся в помещении людей, а само судно наполнилось облаком перегретого пара. Причина взрыва осталась тайной, пока в остатках паровика не нашли кусочков цинка. Таким образом, мы видим, что силы химического сродства, находясь под контролем, становятся полезными слугами, а вне контроля – страшными господами»[8].

Замазка Менделеева

   К расплавленному воску присыпают, перемешивая, порошок канифоли, затем оксида железа, продолжая нагревать и перемешивать, пока не получится однородная масса, которую разливают в картонные формочки или спичечные коробки. Перед применением ее вновь расплавляют. Замазка склеивает стекло со стеклом и стекло с металлом.
   Сам изобретатель был настолько доволен ею, что не раз говаривал: «Эх, Дмитрий Иванович, что бы ты делал, если бы профессор Менделеев не изобрел своей замазки». Кстати, о Менделееве. Его научная деятельность высоко ценилась в культурных странах, он был членом чуть ли не всех европейских академий наук, кроме… русской. Представители «чистой науки», петербургские академики, забаллотировали его кандидатуру в члены академии на том основании, что он «унижает» себя, занимаясь чисто практическими вопросами – приложением науки к технике.

Вода из огня

   Ну, теперь опять можно вернуться к нашему прибору. Наполним газом еще один цилиндр. На этот раз газ сгорает почти беззвучно и не моментально, можно даже заметить появившееся при этом почти бесцветное пламя. Вынем газоотводную трубку из пневматической ванны и, отвернув на всякий случай в сторону лицо, зажжем выходящий из нее газ. Он горит спокойно, маленьким, еле видным пламенем. Что же получается при горении? Вода! Приблизьте к пламени холодный, совершенно сухой утюг, – он покроется каплями воды. Металлы отнимают от воды кислород, а выделившийся водород снова при сгорании соединяется с ним и снова превращается в воду. Водород горит не только в воздухе: еще энергичнее, чем с кислородом, соединяется этот газ с хлором. Если бы опустить наше водородное пламя в сосуд с хлором, оно не погасло бы; оно продолжало бы гореть, сменив свой голубоватый, чуть заметный цвет на зеленоватый, ясно видный. Хлор (мы еще с ним познакомимся) – цветной газ. Его желто-зеленый цвет бледнел бы по мере горения водорода, и, когда бы содержимое сосуда обесцветилось, пламя угасло бы само собою. В результате горения мы получили бы уже хлористый водород.
   Прилив в сосуд воды и взболтав сосуд, мы получили бы соляную кислоту, окрашивающую лакмусовую бумажку в красный цвет. Но мы не станем проделывать этот опыт: как хлор, так и хлористый водород ядовиты, и их не следует получать в домашних условиях.

«Взрыв» аэростата

   В годы активного использования дирижаблей и аэростатов химики обезопасили от огня воздухоплавание, наполняя оболочку дирижаблей инертным газом гелием. К сожалению, гелий не так легок, как водород, и его получение представляет собой несколько более сложный процесс, чем получение водорода. Но использование гелия практически решает вопрос топлива для воздухоплавания, ведь неуправляемые аэростаты раньше наполнялись и светильным газом[9]. Светильный газ тяжелее водорода и также огнеопасен, но обходился значительно дешевле.

   Рис. 11. Взрыв игрушечного аэростата

   Раньше на улицах наших городов часто появлялись продавцы с гроздьями красных, зеленых и синих детских воздушных шаров, наполненных светильным газом. Купив при случае такой шар, с ним можно было в безопасном виде воспроизвести катастрофу, которая в действительности ужасна. Такие катастрофы с воздухоплавателями, увы, бывали. Прикрепив к шару легонькую корзиночку (гондолу), вырезанную из бумаги, и усадив в нее таких же бумажных воздухоплавателей, привязывали к нему вместо обычной тонкой бечевки, удерживающей шар, стопиновую нить. Такие шары имеют внизу коротенькую резиновую трубку, туго-натуго перевязанную несколькими оборотами бечевки. Не развязывая последней, трубочку обвязывали концом стопиновой нити. Стопин – это, собственно, не нить, а узенькая ленточка, пропитанная медленно горящей смесью аммонийной селитры с пороховой пылью. Метр стопина сгорает в течение 15 секунд. Вам его понадобилось бы не более полутора метров. Дав шару подняться на длину стопиновой нити, свободный конец последней поджигали и выпускали шар на волю. Конечно, опыт следовало проводить не в комнате, а на открытом воздухе и в тихую погоду. Шар, плавно поднявшись ввысь, менее чем через минуту взрывался, и несчастные «аэронавты», крутясь и перевертываясь в воздухе, падали на землю.

Переливание… вверх

   Всегда ли переливаемое вещество льется сверху вниз? Мы так привыкли переливать жидкости, которые во много раз тяжелее воздуха, что нам и в голову не приходит ставить подобный вопрос. А между тем, подумав, вы сами легко сообразите, что нельзя из пробирки с водородом перелить этот газ в другую пробирку тем же приемом, какой мы применяем при переливании воды. В этом случае придется как раз обратно – переливать из нижней пробирки в верхнюю.
   Наполнив под водой одну из пробирок водородом, берем другую «пустую», то есть наполненную воздухом, и, держа последнюю отверстием вниз, ставим ее рядом с первой. Теперь пробирку с водородом быстро переворачиваем вверх отверстием так, чтобы оно пришлось как раз под отверстием второй пробирки (рис. 12). Если опыт удался, легкая вспышка при приближении второй пробирки к пламени спиртовой лампы покажет нам, что водород «перелился» в нее из первой пробирки. Известный навык, требующийся для такого опыта, приобретается после двух-трех упражнений.

   Рис. 12. Переливание вверх

Мыльные пузыри

   Обратили ли вы внимание, что мыльные пузыри зимой поднимаются вверх, а летом падают вниз? Это происходит оттого, что теплый воздух легче холодного и зимой разница между температурой воздуха в комнате (особенно вблизи окон) и выдыхаемого вами в пузырь достаточна, чтобы преодолеть тяжесть его оболочки. Наполняя мыльные пузыри водородом, можно увидеть их летящими ввысь и в самый жаркий летний день. Как бы тепел и легок ни был летний воздух, он все же тяжелее водорода. Чтобы получить пузыри величиной с крупное антоновское яблоко, возьмите совершенно чистое, так называемое марсельское мыло, изготавливаемое из оливкового масла, настрогайте его перочинным ножом мелкими стружками и растворите в воде, добавив потом к ней глицерина. Мыла и глицерина возьмите поровну (например, по 5 граммов), а дистиллированной или мягкой дождевой воды вчетверо больше (20 граммов). Всыпав мыло в пузырек и залив водою, оставьте стоять на сутки, потом долейте глицерином и, хорошо взболтав, дайте смеси постоять еще сутки. Такая смесь будет вам служить долго; для опытов же ее достаточно брать каждый раз по 1 чайной ложке.
   Укрепив в отверстии газоотводной трубки прибора для добывания водорода соломинку с расщепленными концами, легко научиться при ее помощи выдувать крупные пузыри. Надо только несколько изменить газоотводную трубку, надев на ее конец отрезок резиновой, а в другой конец последней вставив стеклянную трубку с оттянутым концом. Сжимая резиновую трубку пальцами, можно регулировать быстроту выдувания. Пузыри поднимаются в комнате до самого потолка, а на открытом воздухе в безветренную погоду улетают так высоко, что скрываются из глаз.

   Рис. 13. Взрыв мыльного пузыря

   Можете привязанным к палке горящим огарком подорвать в полете и такой «мыльный аэростат». Только не забывайте о близости прибора для получения водорода! Налив мыльную воду в глубокую тарелку и погрузив в нее конец газоотводной трубки, получите целую гору мыльной пены. Если отнести тарелку подальше от прибора с водородом, можно взорвать пену.

Загадочный фонтан

   Длинной резиновой трубкой я соединяю наш аппарат для получения водорода с горлом бутылки, дно у которой отрезано. Образовавшимся стеклянным цилиндром прикрыт пористый глиняный сосуд от гальванического элемента, поставленный дном вверх на круглую стеклянную пластинку с отверстием в центре (рис. 14). Длинная стеклянная трубка, состоящая из двух отдельных отрезков, соединенных резиновой трубочкой, выходит верхним концом в пористый сосуд, а нижним пропущена через пробку двугорлой банки. Все это устройство поддерживается металлической штангой с зажимом. Склянка налита водой; из ее второго горла выступает стеклянная трубка с оттянутым концом; нижний конец ее опущен почти до дна склянки. Все щели и зазоры соединений плотно замазаны замазкой.

   Рис. 14. Фонтан

   Пока я объяснял вам устройство прибора, я все время сжимал пальцами резиновую трубочку, соединяющую длинные вертикальные стеклянные трубки. Отойдите подальше, чтобы вас не облило водою; я опускаю руку, и… каков фонтан! Он бьет из узкого отверстия левой трубки на высоту чуть ли не целого метра. Зажав вновь резиновую трубочку, я останавливаю фонтан; отпустив опять, даю ему бить. Не будем, впрочем, увлекаться этим зрелищем и прекратим получение водорода; он в данном случае выходит прямо на воздух, а вы знаете, как опасна такая смесь. Откроем окно, чтобы очистить в комнате воздух, и разберем прибор на части. Этот опыт основан на диффузии (проникновении) водорода через пористые стенки глиняного сосуда. Оттуда газ проходит в двугорлую склянку и давит на воду, заставляя ее бить высоким фонтаном.

Из желтого в зеленое без прибавления синего

   Раз уже у нас идет речь о водороде и под руками имеется кальций, покажу вам еще один опыт. Он не особенно эффектен, но поучителен. В стакане – красно-желтый раствор хлорного железа. Как превратить его цвет в зеленый, не приливая к нему синей краски? Бросаем в стакан кусочек кальция; выделяется водород, и жидкость постепенно зеленеет. Это очень важная в химии реакция восстановления, противоположная реакции окисления. Не будем пока на ней останавливаться, но в дальнейшем я еще напомню вам об этом опыте. Он поможет нам отчасти выяснить тайну строения окружающих нас веществ.

«Последний перманентный газ»

   В XIX веке газы делились на перманентные (постоянные) и сгущаемые в жидкость. Одним из перманентных был и водород. В 1877 году Кальете и Пикте доказали, что всякий газ должен сгуститься в жидкость, лишь бы удалось охладить его ниже его «критической» температуры, при которой и выше которой он никаким давлением сгущен быть не может. Вслед за ними Врублевский и Ольшевский доказали это положение, обратив в жидкости кислород, азот и окись углерода, а Дюар – сгустив водород.
   Но в 1895 году был открыт новый газ – гелий, неизвестный во времена Дюара. Как ни велики были достижения Дюара, давшие возможность получать твердую углекислоту («сухой лед») и кислород из воздуха, путем удаления из жидкого воздуха азота выпариванием при несколько высшей температуре, гелий долгие годы никому не удавалось сгустить. Неужели были правы ученые прежних лет? Неужели гелий действительно перманентный газ? Даже при —268 °C он оставался газом. Почти три десятилетия гелий истощал терпение ученых, не желая подчиниться общему для всех газов закону.
   Только в 1922 году удалось, наконец, Камерлингу Онесу, доведшему понижение температуры до —268,8 °C, сгустить этот «последний перманентный газ». Кезанг при – 271,9 °C заморозил гелий в твердое, абсолютно прозрачное тело. Это произошло в 1926 году. Камерлингу Онесу не удалось дожить до этого дня, он умер несколькими месяцами раньше. О гелии, об интересном пути его открытия, нам еще придется сказать в дальнейшем. Это легчаишии из газов, за исключением водорода, и идет он на наполнение дирижаблей, так как он не горюч и не взрывается в смеси с воздухом. Им же наполняют газосветные лампы, сигнализирующие сквозь туман. При прохождении через гелий тока такая лампа светит красным светом.
   

notes

Примечания

1

2

   Брожение – ферментативное расщепление органических веществ, преимущественно углеводов. Может осуществляться в организме животных, растений и многих микроорганизмов и является результатом жизнедеятельности различных микроорганизмов, меняющих химический состав обитаемой ими питательной среды (действуют не сами живые организмы, а выделяемые ими химические соединения). Бактерии спиртового брожения разлагают сахарные вещества с выделением спирта, углекислого газа и малых доз других соединений.

3

4

5

6

7

   Лейденская банка – электрический конденсатор, изобретенный голландскими учеными в 1745 году в Лейдене. Он имеет форму цилиндра, оклеенного внутри и снаружи листовым оловом примерно до 2/3 его высоты и прикрытого деревянной крышкой. Сквозь крышку в банку проходит металлический стержень. Лейденская банка позволяла накапливать и хранить сравнительно большие заряды, порядка микрокулона. Благодаря лейденской банке удалось впервые искусственным путем получить электрическую искру. В современном мире лейденская банка по большей части применяется для демонстраций и опытов.

8

9

комментариев нет  

Отпишись
Ваш лимит — 2000 букв

Включите отображение картинок в браузере  →